Gaucher Yann, Tanaka Katsumasa, Johansson Daniel J A, Goll Daniel S, Ciais Philippe
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA/CNRS/UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.
CIRED, Ecole des Ponts, Nogent-sur-Marne, France.
Nat Commun. 2025 Mar 28;16(1):3021. doi: 10.1038/s41467-025-58284-6.
Carbon dioxide removal (CDR) is deemed necessary to attain the Paris Agreement's climate objectives. While bioenergy with carbon capture and storage (BECCS) has generated substantial attention, sustainability concerns have led to increased examination of alternative strategies, including enhanced rock weathering (EW). We analyse the role of EW under cost-effective mitigation pathways, by including the CDR potential of basalt applications from silicate weathering (geochemical CDR) and enhanced ecosystem growth and carbon storage in response to phosphorus released by basalt (biotic CDR). Using an integrated carbon cycle, climate and energy system model, we show that the application of basalt to forests could triple the level of carbon sequestration induced by EW compared to an application restricted to croplands. EW also reduces the costs of achieving the Paris Agreement targets as well as the reliance on BECCS. Further understanding requires improved knowledge of weathering rates and basalt side-effects through field testing.
为实现《巴黎协定》的气候目标,去除二氧化碳(CDR)被认为是必要的。虽然碳捕获与封存生物能源(BECCS)已引起广泛关注,但出于可持续性考虑,人们对包括强化岩石风化(EW)在内的替代策略进行了更多研究。我们通过纳入硅酸盐风化中玄武岩应用的CDR潜力(地球化学CDR)以及玄武岩释放的磷促进生态系统生长和碳储存(生物CDR),分析了EW在具有成本效益的减排途径中的作用。使用一个综合的碳循环、气候和能源系统模型,我们表明,与仅应用于农田相比,将玄武岩应用于森林可使EW诱导的碳固存水平增加两倍。EW还降低了实现《巴黎协定》目标的成本以及对BECCS的依赖。进一步的了解需要通过实地测试更好地掌握风化速率和玄武岩的副作用。