Suppr超能文献

利用可见-近红外光谱法对掺假姜黄中淀粉进行准确估计的混合方法。

Hybrid method for accurate starch estimation in adulterated turmeric using Vis-NIR spectroscopy.

机构信息

School of Physical and Applied Sciences, Goa University, Taleigao Plateau, India.

School of Chemical Sciences, Goa University, Taleigao Plateau, India.

出版信息

Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2023 Sep;40(9):1131-1146. doi: 10.1080/19440049.2023.2241557. Epub 2023 Aug 17.

Abstract

Turmeric is widely used as a health supplement and foodstuff in South East Asian countries because of its medicinal benefits. Like several other plants and peppers, turmeric is prone to exploitation because of its economic value, rising consumer need, and essential food element that adds colour and flavour. Due to this, quick and comprehensive testing processes are needed to detect adulterants in turmeric. In this study, pure turmeric powders were mixed with starch in proportions ranging from 0 to 50% with a 1% variation to obtain different combinations. Reflectance spectra of pure turmeric and starch mixed samples were recorded using a JASCO-V770 spectrometer from 400 to 2050 nm. The recorded spectra were pre-processed using a Multiplicative Scatter Correction (MSC) and Standard Normal Variate (SNV). The Savitzky-Golay (SG) filter was initially applied to these original (X), MSC, and SNV-corrected spectra. Secondly, the Extra Tree Regressor (ETR) feature selection method was employed to select the best features. Finally, principal component analysis (PCA) was used to reduce the dimension of the selected features. The stacked generalization method was applied to improve the performance of this work. Both regressors and classifier stacking techniques have been tested with different classification and regression methods. The K-Nearest Neighbours (KNN), Decision Tree (DT), and Random Forest (RF) models were used as base learners, and Logistic Regression (LRC) was used as a meta-model for classification and Linear Regression (LR) for regression analysis. The proposed method achieved the best regression performance with of 0.999, Root Mean Square Error (RMSE) of 0.206, Ratio of Performance to Deviation (RPD) of 73.73, and Range Error Ratio (RER) of 480.58, whereas 100% F1 score and Matthew's Correlation Coefficient (MCC) classification performance.

摘要

姜黄作为一种健康补充剂和东南亚国家的食品而被广泛使用,因为它具有药用功效。与其他几种植物和辣椒一样,由于其经济价值、不断增长的消费者需求以及作为增加颜色和风味的基本食品元素,姜黄容易被滥采滥挖。因此,需要快速和全面的测试过程来检测姜黄中的掺杂物。在这项研究中,将纯姜黄粉与淀粉以 0 到 50%的比例混合,变化幅度为 1%,以获得不同的组合。使用 JASCO-V770 分光光度计从 400 到 2050nm 记录纯姜黄和淀粉混合样品的反射光谱。使用乘法散射校正(MSC)和标准正态变量(SNV)对记录的光谱进行预处理。最初将 Savitzky-Golay(SG)滤波器应用于这些原始(X)、MSC 和 SNV 校正的光谱。其次,使用 Extra Tree Regressor(ETR)特征选择方法选择最佳特征。最后,使用主成分分析(PCA)来降低所选特征的维度。应用堆叠泛化方法来提高这项工作的性能。分别使用不同的分类和回归方法对回归器和分类器堆叠技术进行了测试。K-最近邻(KNN)、决策树(DT)和随机森林(RF)模型被用作基础学习者,逻辑回归(LRC)被用作分类的元模型,线性回归(LR)用于回归分析。该方法的回归性能最佳, 为 0.999,均方根误差(RMSE)为 0.206,性能偏差比(RPD)为 73.73,范围误差比(RER)为 480.58,而分类性能的 100%F1 分数和马修斯相关系数(MCC)为 1。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验