Suppr超能文献

通过分子络合制备高性能锂硫电池

High-Performance Lithium-Sulfur Batteries via Molecular Complexation.

作者信息

Wang Peiyu, Kateris Nikolaos, Li Baiheng, Zhang Yiwen, Luo Jianmin, Wang Chuanlong, Zhang Yue, Jayaraman Amitesh S, Hu Xiaofei, Wang Hai, Li Weiyang

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States.

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.

出版信息

J Am Chem Soc. 2023 Aug 30;145(34):18865-18876. doi: 10.1021/jacs.3c05209. Epub 2023 Aug 17.

Abstract

Beyond lithium-ion technologies, lithium-sulfur batteries stand out because of their multielectron redox reactions and high theoretical specific energy (2500 Wh kg). However, the intrinsic irreversible transformation of soluble lithium polysulfides to solid short-chain sulfur species (LiS and LiS) and the associated large volume change of electrode materials significantly impair the long-term stability of the battery. Here we present a liquid sulfur electrode consisting of lithium thiophosphate complexes dissolved in organic solvents that enable the bonding and storage of discharge reaction products without precipitation. Insights garnered from coupled spectroscopic and density functional theory studies guide the complex molecular design, complexation mechanism, and associated electrochemical reaction mechanism. With the novel complexes as cathode materials, high specific capacity (1425 mAh g at 0.2 C) and excellent cycling stability (80% retention after 400 cycles at 0.5 C) are achieved at room temperature. Moreover, the highly reversible all-liquid electrochemical conversion enables excellent low-temperature battery operability (>400 mAh g at -40 °C and >200 mAh g at -60 °C). This work opens new avenues to design and tailor the sulfur electrode for enhanced electrochemical performance across a wide operating temperature range.

摘要

除了锂离子技术之外,锂硫电池因其多电子氧化还原反应和高理论比能量(2500 Wh/kg)而脱颖而出。然而,可溶性多硫化锂向固态短链硫物种(Li₂S和Li₂S₂)的固有不可逆转变以及电极材料相关的大体积变化显著损害了电池的长期稳定性。在此,我们展示了一种由溶解在有机溶剂中的硫代磷酸锂络合物组成的液体硫电极,该电极能够在不沉淀的情况下键合和存储放电反应产物。从耦合光谱和密度泛函理论研究中获得的见解指导了复杂分子设计、络合机制以及相关的电化学反应机制。以这些新型络合物作为阴极材料,在室温下实现了高比容量(0.2 C时为1425 mAh/g)和出色的循环稳定性(0.5 C下400次循环后保持率为80%)。此外,高度可逆的全液体电化学转化实现了出色的低温电池操作性(-40°C时>400 mAh/g,-60°C时>200 mAh/g)。这项工作为设计和定制硫电极以在宽工作温度范围内提高电化学性能开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验