Institute of Neuroinformatics University of Zürich and ETH, Zürich, Switzerland.
AI Center, ETH, Zürich, Switzerland.
Biol Cybern. 2023 Oct;117(4-5):345-361. doi: 10.1007/s00422-023-00973-w. Epub 2023 Aug 17.
The ability to sequentially learn multiple tasks without forgetting is a key skill of biological brains, whereas it represents a major challenge to the field of deep learning. To avoid catastrophic forgetting, various continual learning (CL) approaches have been devised. However, these usually require discrete task boundaries. This requirement seems biologically implausible and often limits the application of CL methods in the real world where tasks are not always well defined. Here, we take inspiration from neuroscience, where sparse, non-overlapping neuronal representations have been suggested to prevent catastrophic forgetting. As in the brain, we argue that these sparse representations should be chosen on the basis of feed forward (stimulus-specific) as well as top-down (context-specific) information. To implement such selective sparsity, we use a bio-plausible form of hierarchical credit assignment known as Deep Feedback Control (DFC) and combine it with a winner-take-all sparsity mechanism. In addition to sparsity, we introduce lateral recurrent connections within each layer to further protect previously learned representations. We evaluate the new sparse-recurrent version of DFC on the split-MNIST computer vision benchmark and show that only the combination of sparsity and intra-layer recurrent connections improves CL performance with respect to standard backpropagation. Our method achieves similar performance to well-known CL methods, such as Elastic Weight Consolidation and Synaptic Intelligence, without requiring information about task boundaries. Overall, we showcase the idea of adopting computational principles from the brain to derive new, task-free learning algorithms for CL.
顺序学习多个任务而不遗忘的能力是生物大脑的关键技能,而这代表了深度学习领域的一个主要挑战。为了避免灾难性遗忘,已经设计了各种连续学习 (CL) 方法。然而,这些方法通常需要离散的任务边界。这种要求在生物学上似乎不太合理,并且经常限制 CL 方法在现实世界中的应用,在现实世界中任务并不总是明确定义的。在这里,我们从神经科学中汲取灵感,其中建议使用稀疏、不重叠的神经元表示来防止灾难性遗忘。与大脑一样,我们认为这些稀疏表示应该基于前馈(刺激特定)和自上而下(上下文特定)信息来选择。为了实现这种选择性稀疏,我们使用一种称为深度反馈控制 (DFC) 的生物上合理的分层信用分配形式,并将其与胜者全拿稀疏机制相结合。除了稀疏性之外,我们还在每个层内引入侧向递归连接,以进一步保护以前学习到的表示。我们在分裂 MNIST 计算机视觉基准上评估 DFC 的新稀疏递归版本,并表明只有稀疏性和层内递归连接的组合才能提高相对于标准反向传播的 CL 性能。我们的方法在不要求任务边界信息的情况下,实现了与弹性权重整合和突触智能等知名 CL 方法相似的性能。总体而言,我们展示了采用大脑计算原理来推导出新的、无任务学习算法用于 CL 的想法。