Yan Yulong, Chu Haoming, Jin Yi, Huan Yuxiang, Zou Zhuo, Zheng Lirong
School of Information Science and Technology, Fudan University, Shanghai, China.
Front Neurosci. 2022 Apr 14;16:760298. doi: 10.3389/fnins.2022.760298. eCollection 2022.
The spiking neural network (SNN) is a possible pathway for low-power and energy-efficient processing and computing exploiting spiking-driven and sparsity features of biological systems. This article proposes a sparsity-driven SNN learning algorithm, namely backpropagation with sparsity regularization (BPSR), aiming to achieve improved spiking and synaptic sparsity. Backpropagation incorporating spiking regularization is utilized to minimize the spiking firing rate with guaranteed accuracy. Backpropagation realizes the temporal information capture and extends to the spiking recurrent layer to support brain-like structure learning. The rewiring mechanism with synaptic regularization is suggested to further mitigate the redundancy of the network structure. Rewiring based on weight and gradient regulates the pruning and growth of synapses. Experimental results demonstrate that the network learned by BPSR has synaptic sparsity and is highly similar to the biological system. It not only balances the accuracy and firing rate, but also facilitates SNN learning by suppressing the information redundancy. We evaluate the proposed BPSR on the visual dataset MNIST, N-MNIST, and CIFAR10, and further test it on the sensor dataset MIT-BIH and gas sensor. Results bespeak that our algorithm achieves comparable or superior accuracy compared to related works, with sparse spikes and synapses.
脉冲神经网络(SNN)是利用生物系统的脉冲驱动和稀疏性特征进行低功耗和高能效处理与计算的一种可能途径。本文提出了一种稀疏性驱动的SNN学习算法,即带稀疏正则化的反向传播(BPSR),旨在实现更好的脉冲和突触稀疏性。结合脉冲正则化的反向传播用于在保证精度的情况下最小化脉冲发放率。反向传播实现了时间信息捕获,并扩展到脉冲循环层以支持类脑结构学习。提出了具有突触正则化的重新布线机制,以进一步减轻网络结构的冗余性。基于权重和梯度的重新布线调节突触的修剪和生长。实验结果表明,由BPSR学习的网络具有突触稀疏性,并且与生物系统高度相似。它不仅平衡了精度和发放率,还通过抑制信息冗余促进了SNN学习。我们在视觉数据集MNIST、N-MNIST和CIFAR10上评估了所提出的BPSR,并在传感器数据集MIT-BIH和气体传感器上进一步对其进行了测试。结果表明,与相关工作相比,我们的算法在具有稀疏脉冲和突触的情况下实现了相当或更高的精度。