Suppr超能文献

人口统计学因素、药物依从性与移植后健康结局:纵向多层建模方法。

Demographic Factors, Medication Adherence, and Post-transplant Health Outcomes: A Longitudinal Multilevel Modeling Approach.

机构信息

College of Social Work, University Center, Florida State University, 296 Champions Way, Building C - Suite 2500, Tallahassee, FL, USA.

College of Medicine, Florida State University, Tallahassee, FL, USA.

出版信息

J Clin Psychol Med Settings. 2024 Mar;31(1):163-173. doi: 10.1007/s10880-023-09970-4. Epub 2023 Aug 17.

Abstract

Few studies in pediatric solid organ transplantation have examined non-adherence to immunosuppressive medication over time and its associations with demographic factors and post-transplant outcomes including late acute rejection and hospitalizations. We examined longitudinal variation in patient Medication Level Variability Index (MLVI) adherence data from pediatric kidney, liver, and heart transplant recipients. Patient and administrative data from the United Network for Organ Sharing were linked with electronic health records and MLVI values for 332 patients. Multilevel mediation modeling indicated comparatively more variation in MLVI values between patients than within patients, longitudinally, over 10 years post transplant. MLVI values significantly predicted late acute rejection and hospitalization. MLVI partially mediated patient factors and post-transplant outcomes for patient age indicating adolescents may benefit most from intervention efforts. Results demonstrate the importance of longitudinal assessment of adherence and differences among patients. Efforts to promote medication adherence should be adapted to high-risk patients to increase likelihood of adherence.

摘要

在儿科实体器官移植中,很少有研究检查过免疫抑制药物的长期不依从情况,以及其与人口统计学因素和移植后结果(包括晚期急性排斥反应和住院治疗)的关联。我们检查了儿科肾、肝和心脏移植受者的患者用药水平变异指数 (MLVI) 依从性数据的纵向变化。来自美国器官共享网络的患者和管理数据与电子健康记录和 332 名患者的 MLVI 值相关联。多层次中介模型表明,与患者内相比,患者间的 MLVI 值在移植后 10 多年的时间内具有更大的纵向变化。MLVI 值显著预测了晚期急性排斥反应和住院治疗。MLVI 部分中介了患者年龄等患者因素和移植后结果,表明青少年可能最受益于干预措施。研究结果表明了对依从性进行纵向评估以及患者间差异的重要性。促进药物依从性的努力应该针对高风险患者,以提高依从性的可能性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验