Suppr超能文献

利用CT图像的放射组学对肝门周围胆管癌淋巴结转移进行术前预测:一项多中心研究

Radiomics using CT images for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma: a multi-centric study.

作者信息

Zhan Peng-Chao, Yang Ting, Zhang Yuan, Liu Ke-Yan, Li Zhen, Zhang Yu-Yuan, Liu Xing, Liu Na-Na, Wang Hui-Xia, Shang Bo, Chen Yan, Jiang Han-Yu, Zhao Xiang-Tian, Shao Jing-Hai, Chen Zhe, Wang Xin-Dong, Wang Kang, Gao Jian-Bo, Lyu Pei-Jie

机构信息

Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, ZhengzhouZhengzhou, 450052, China.

Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China.

出版信息

Eur Radiol. 2024 Feb;34(2):1280-1291. doi: 10.1007/s00330-023-10108-1. Epub 2023 Aug 17.

Abstract

OBJECTIVES

To develop a CT-based radiomics model for preoperative prediction of lymph node (LN) metastasis in perihilar cholangiocarcinoma (pCCA).

METHODS

The study enrolled consecutive pCCA patients from three independent Chinese medical centers. The Boruta algorithm was applied to build the radiomics signature for the primary tumor and LN. The k-means algorithm was employed to cluster the selected LNs based on the radiomics signature LN. Support vector machines were used to construct the prediction models. The diagnostic efficiency was measured by the area under the receiver operating characteristic curve (AUC). The optimal model was evaluated in terms of calibration, clinical usefulness, and prognostic value.

RESULTS

A total of 214 patients were included in the study (mean age: 61.6 years ± 9.4; 130 male). The selected LNs were classified into two clusters, which were significantly correlated with LN metastasis in all cohorts (p < 0.001). The model incorporated the clinical risk factors, radiomics signature primary tumor, and the LN cluster obtained the best discrimination, with AUC values of 0.981 (95% CI: 0.962-1), 0.896 (95% CI: 0.810-0.982), and 0.865 (95% CI: 0.768-0.961) in the training, internal validation, and external validation cohorts, respectively. High-risk patients predicted by the optimal model had shorter overall survival than low-risk patients (median, 13.7 vs. 27.3 months, p < 0.001).

CONCLUSIONS

The study proposed a radiomics model with good performance to predict LN metastasis in pCCA. As a noninvasive preoperative prediction tool, this model may help in patient risk stratification and personalized treatment.

CLINICAL RELEVANCE STATEMENT

A CT-based radiomics model accurately predicts lymph node metastasis in perihilar cholangiocarcinoma patients. This noninvasive preoperative tool can aid in patient risk stratification and personalized treatment, potentially improving patient outcomes.

KEY POINTS

• The radiomics model based on contrast-enhanced CT is a useful tool for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma. • Radiomics features extracted from lymph nodes show great potential for predicting lymph node metastasis. • The study is the first to identify a lymph node phenotype with a high probability of metastasis based on radiomics.

摘要

目的

建立基于CT的影像组学模型,用于术前预测肝门部胆管癌(pCCA)的淋巴结(LN)转移。

方法

本研究纳入了来自三个独立中国医疗中心的连续性pCCA患者。应用Boruta算法构建原发肿瘤和LN的影像组学特征。采用k均值算法根据影像组学特征LN对选定的LN进行聚类。使用支持向量机构建预测模型。通过受试者操作特征曲线(AUC)下面积来衡量诊断效率。从校准、临床实用性和预后价值方面对最佳模型进行评估。

结果

本研究共纳入214例患者(平均年龄:61.6岁±9.4;男性130例)。选定的LN被分为两个簇,在所有队列中均与LN转移显著相关(p<0.001)。该模型纳入临床危险因素、影像组学特征原发肿瘤和LN簇,具有最佳的区分能力,在训练、内部验证和外部验证队列中的AUC值分别为0.981(95%CI:0.962-1)、0.896(95%CI:0.810-0.982)和0.865(95%CI:0.768-0.961)。最佳模型预测的高危患者总生存期短于低危患者(中位数,13.7个月对27.3个月,p<0.001)。

结论

本研究提出了一个性能良好的影像组学模型,用于预测pCCA的LN转移。作为一种非侵入性的术前预测工具,该模型可能有助于患者风险分层和个性化治疗。

临床相关性声明

基于CT的影像组学模型可准确预测肝门部胆管癌患者的淋巴结转移。这种非侵入性术前工具可辅助患者风险分层和个性化治疗,可能改善患者预后。

关键点

•基于增强CT的影像组学模型是术前预测肝门部胆管癌淋巴结转移的有用工具。•从淋巴结提取的影像组学特征在预测淋巴结转移方面显示出巨大潜力。•本研究首次基于影像组学确定了具有高转移概率的淋巴结表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验