Suppr超能文献

黑暗中被动自运动期间晕动病动力学的计算模型。

A computational model of motion sickness dynamics during passive self-motion in the dark.

机构信息

Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA.

出版信息

Exp Brain Res. 2023 Sep;241(9):2311-2332. doi: 10.1007/s00221-023-06684-9. Epub 2023 Aug 17.

Abstract

Predicting the time course of motion sickness symptoms enables the evaluation of provocative stimuli and the development of countermeasures for reducing symptom severity. In pursuit of this goal, we present an observer-driven model of motion sickness for passive motions in the dark. Constructed in two stages, this model predicts motion sickness symptoms by bridging sensory conflict (i.e., differences between actual and expected sensory signals) arising from the observer model of spatial orientation perception (stage 1) to Oman's model of motion sickness symptom dynamics (stage 2; presented in 1982 and 1990) through a proposed "Normalized innovation squared" statistic. The model outputs the expected temporal development of human motion sickness symptom magnitudes (mapped to the Misery Scale) at a population level, due to arbitrary, 6-degree-of-freedom, self-motion stimuli. We trained model parameters using individual subject responses collected during fore-aft translations and off-vertical axis of rotation motions. Improving on prior efforts, we only used datasets with experimental conditions congruent with the perceptual stage (i.e., adequately provided passive motions without visual cues) to inform the model. We assessed model performance by predicting an unseen validation dataset, producing a Q value of 0.86. Demonstrating this model's broad applicability, we formulate predictions for a host of stimuli, including translations, earth-vertical rotations, and altered gravity, and we provide our implementation for other users. Finally, to guide future research efforts, we suggest how to rigorously advance this model (e.g., incorporating visual cues, active motion, responses to motion of different frequency, etc.).

摘要

预测晕动病症状的时间进程有助于评估刺激性刺激物,并开发减轻症状严重程度的对策。为了实现这一目标,我们提出了一种用于黑暗中被动运动的晕动病观察者驱动模型。该模型分两个阶段构建,通过提出的“归一化创新平方”统计量,将源自空间定向感知观察者模型的感觉冲突(即实际和预期感觉信号之间的差异)(第 1 阶段)与 Oman 的晕动病症状动力学模型(第 2 阶段;分别于 1982 年和 1990 年提出)联系起来,从而预测晕动病症状。该模型输出由于任意的 6 自由度自运动刺激,人群水平上的人类晕动病症状幅度(映射到痛苦量表)的预期时间发展。我们使用在前后平移和偏离垂直轴旋转运动期间收集的个体受试者反应来训练模型参数。通过仅使用与感知阶段一致的实验条件(即,充分提供没有视觉线索的被动运动)来告知模型,我们改进了先前的努力。我们通过预测看不见的验证数据集来评估模型性能,产生的 Q 值为 0.86。通过对一系列刺激(包括平移、地球垂直旋转和改变重力)进行预测,展示了该模型的广泛适用性,我们提供了我们的实现,以供其他用户使用。最后,为了指导未来的研究工作,我们建议如何严格推进该模型(例如,纳入视觉线索、主动运动、对不同频率运动的反应等)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验