Chen Tian-Sheng, Long Hao, Gao Yuxing, Xu Hai-Chao
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, China.
Angew Chem Int Ed Engl. 2023 Oct 2;62(40):e202310138. doi: 10.1002/anie.202310138. Epub 2023 Aug 28.
The selective oxygenation of ubiquitous C(sp )-H bonds remains a highly sought-after method in both academia and the chemical industry for constructing functionalized organic molecules. However, it is extremely challenging to selectively oxidize a certain C(sp )-H bond to afford alcohols due to the presence of multiple C(sp )-H bonds with similar strength and steric environment in organic molecules, and the alcohol products being prone to further oxidation. Herein, we present a practical and cost-efficient electrochemical method for the highly selective monooxygenation of benzylic C(sp )-H bonds using continuous flow reactors. The electrochemical reactions produce trifluoroacetate esters that are resistant to further oxidation but undergo facile hydrolysis during aqueous workup to form benzylic alcohols. The method exhibits a broad scope and exceptional site selectivity and requires no catalysts or chemical oxidants. Furthermore, the electrochemical method demonstrates excellent scalability by producing 115 g of one of the alcohol products. The high site selectivity of the electrochemical method originates from its unique mechanism to cleave benzylic C(sp )-H bonds through sequential electron/proton transfer, rather than the commonly employed hydrogen atom transfer (HAT).
在学术界和化学工业中,对普遍存在的C(sp³)-H键进行选择性氧化仍然是构建功能化有机分子备受追捧的方法。然而,由于有机分子中存在多个强度和空间环境相似的C(sp³)-H键,以及醇产物易于进一步氧化,选择性氧化特定的C(sp³)-H键以得到醇极具挑战性。在此,我们展示了一种实用且经济高效的电化学方法,该方法使用连续流动反应器对苄基C(sp³)-H键进行高度选择性的单氧化反应。电化学反应生成的三氟乙酸酯对进一步氧化具有抗性,但在水相后处理过程中易于水解形成苄醇。该方法适用范围广且具有出色的位点选择性,无需催化剂或化学氧化剂。此外,通过生产115克其中一种醇产物,该电化学方法展示了出色的可扩展性。电化学方法的高位点选择性源于其独特的机理,即通过顺序电子/质子转移而非常用的氢原子转移(HAT)来裂解苄基C(sp³)-H键。