Xu Yousen, Wu Hao, Zhu ChenXi, Tu Minjun, Zhang Lei
Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
Adv Sci (Weinh). 2025 Jun;12(22):e2416803. doi: 10.1002/advs.202416803. Epub 2025 Apr 26.
Electrooxidative coupling of C(sp)─H bonds with nucleophiles offers an attractive method for constructing C─C and C─X bonds without sacrificial oxidants. However, the direct electrochemical approach requires the nucleophilic reagent to have a higher potential than the C(sp)─H coupling partners, which restricts the substrate scope. In this study, a quinoline derivative is introduced as an electrochemical mediator, enabling efficient C─H bond etherification with reduced reliance on the electronic properties of substrates. The catalytic system demonstrates broad substrate compatibility, extending to C(sp)─H coupling partners featuring a diverse range of C─H bonds, including tertiary benzylic C─H bonds and unactivated C(sp)─H bonds. Mechanistic investigations confirm the role of the electrocatalyst in the hydrogen atom transfer (HAT) process. This method provides a versatile and efficient strategy for the late-stage functionalization of bioactive molecules.
C(sp)─H键与亲核试剂的电氧化偶联为构建C─C和C─X键提供了一种有吸引力的方法,且无需使用牺牲性氧化剂。然而,直接电化学方法要求亲核试剂具有比C(sp)─H偶联伙伴更高的电位,这限制了底物范围。在本研究中,引入了一种喹啉衍生物作为电化学介质,从而实现了高效的C─H键醚化,同时降低了对底物电子性质的依赖。该催化体系表现出广泛的底物兼容性,扩展到具有各种C─H键的C(sp)─H偶联伙伴,包括叔苄基C─H键和未活化的C(sp)─H键。机理研究证实了电催化剂在氢原子转移(HAT)过程中的作用。该方法为生物活性分子的后期功能化提供了一种通用且高效的策略。