Suppr超能文献

在较低过电势下电化学氧化有机分子:通过电子质子转移介质实现更广泛的官能团兼容性。

Electrochemical Oxidation of Organic Molecules at Lower Overpotential: Accessing Broader Functional Group Compatibility with Electron-Proton Transfer Mediators.

机构信息

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States.

出版信息

Acc Chem Res. 2020 Mar 17;53(3):561-574. doi: 10.1021/acs.accounts.9b00544. Epub 2020 Feb 12.

Abstract

Electrochemical organic oxidation reactions are highly appealing because protons are often effective terminal electron acceptors, thereby avoiding undesirable stoichiometric oxidants. These reactions are often plagued by high overpotentials, however, that greatly limit their utility. Single-electron transfer (SET) from organic molecules generates high-energy radical-cations. Formation of such intermediates often requires electrode potentials far above the thermodynamic potentials of the reaction and frequently causes decomposition and/or side reactions of ancillary functional groups. In this Account, we show how electrocatalytic electron-proton transfer mediators (EPTMs) address this challenge. EPTMs bypass the formation of radical-cation intermediates by supporting mechanisms that operate at electrode potentials much lower (≥1 V) than those of analogous direct electrolysis reactions.The stable aminoxyl radical TEMPO (2,2,6,6-tetramethylpiperidine -oxyl) is an effective mediator for electrochemical alcohol oxidation, and we have employed such processes for applications ranging from pharmaceutical synthesis to biomass conversion. A complementary electrochemical alcohol oxidation method employs a cooperative Cu/TEMPO mediator system that operates at 0.5 V lower electrode potential than the TEMPO-only mediated process. This difference, which arises from a different catalytic mechanism, rationalizes the broad functional group tolerance of Cu/TEMPO-based aerobic alcohol oxidation catalysts.Aminoxyl mediators address long-standing challenges in the "Shono oxidation," an important method for α-C-H oxidation of tertiary amides and carbamates. Shono oxidations are initiated by a high-potential SET step that limits their utility. Aminoxyl-mediated Shono-type oxidations have been developed that operate at much lower potentials and tolerate diverse functional groups. Analogous reactivity underlies α-C-H cyanation of secondary cyclic amines, a new method that enables efficient diversification of piperidine-based pharmaceutical building blocks and preparation of non-natural amino acids.Electrochemical oxidations of benzylic C-H bonds are commonly initiated by SET to generate arene radical cations, but such methods are again plagued by large overpotentials. Mediated electrolysis methods that promote hydrogen-atom-transfer (HAT) from benzylic C-H bonds to Fe-oxo species and phthalimide -oxyl (PINO) support C-H oxygenation, iodination, and oxidative-coupling reactions. A complementary method merges photochemistry with electrochemistry to achieve amidation of C(sp)-H bonds. This unique process operates at much lower overpotentials compatible with diverse functional groups.These results have broad implications for organic electrochemistry, highlighting the importance of "overpotential" considerations and the prospects for expanding synthetic utility by using mediators to bypass high-energy outer-sphere electron-transfer mechanisms. Principles demonstrated here for oxidation are equally relevant to electrochemical reductions.

摘要

电化学有机氧化反应非常吸引人,因为质子通常是有效的末端电子受体,从而避免了不希望的化学计量氧化剂。然而,这些反应通常受到高过电势的困扰,这极大地限制了它们的实用性。有机分子的单电子转移(SET)会产生高能自由基阳离子。形成这种中间体通常需要远远高于反应热力学电势的电极电势,并且经常导致辅助官能团的分解和/或副反应。在本综述中,我们展示了电催化质子-电子转移介体(EPTM)如何应对这一挑战。EPTM 通过支持在远低于(≥1 V)类似直接电解反应电极电势下运行的机制来避免自由基阳离子中间体的形成。稳定的氨基氧自由基 TEMPO(2,2,6,6-四甲基哌啶-氧自由基)是电化学醇氧化的有效介体,我们已经将此类过程用于从药物合成到生物质转化的各种应用中。电化学醇氧化的一种互补方法使用协同的 Cu/TEMPO 介体系统,其电极电势比仅 TEMPO 介导的过程低 0.5 V。这种差异源于不同的催化机制,合理化了基于 Cu/TEMPO 的有氧醇氧化催化剂对广泛的官能团耐受性。氨基氧介体解决了“Shono 氧化”中存在的长期挑战,这是一种用于叔酰胺和氨基甲酸酯的α-C-H 氧化的重要方法。Shono 氧化是由高电势 SET 步骤引发的,这限制了其用途。已经开发了在低得多的电势下运行且耐受多种官能团的氨基氧介导的 Shono 型氧化。类似的反应性是基于二级环状胺的α-C-H 氰化反应的基础,这是一种能够有效多样化哌啶类药物构建块并制备非天然氨基酸的新方法。苄基 C-H 键的电化学氧化通常通过 SET 引发生成芳基自由基阳离子,但此类方法再次受到大过电势的困扰。促进从苄基 C-H 键向 Fe-氧物种和邻苯二甲酰亚胺-氧自由基(PINO)转移氢原子的介体电解方法支持 C-H 氧化、碘化和氧化偶联反应。一种互补的方法将光化学与电化学融合,实现 C(sp)-H 键的酰胺化。这种独特的过程在与多种官能团兼容的低得多的过电势下运行。这些结果对有机电化学具有广泛的意义,突出了“过电势”考虑的重要性,并通过使用介体绕过高能外壳层电子转移机制来扩展合成实用性的前景。这里展示的用于氧化的原理同样适用于电化学还原。

相似文献

8
Synthetic Applications of Proton-Coupled Electron Transfer.质子耦合电子转移的合成应用。
Acc Chem Res. 2016 Aug 16;49(8):1546-56. doi: 10.1021/acs.accounts.6b00272. Epub 2016 Jul 29.
9
Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations.铜催化的自由基接力用于不对称自由基转化
Acc Chem Res. 2018 Sep 18;51(9):2036-2046. doi: 10.1021/acs.accounts.8b00265. Epub 2018 Sep 5.

引用本文的文献

6
Metal-Triggered FAD Reduction in d-2-Hydroxyglutarate Dehydrogenase from PAO1.PAO1中d-2-羟基戊二酸脱氢酶的金属触发FAD还原
ACS Bio Med Chem Au. 2024 Dec 6;5(1):204-214. doi: 10.1021/acsbiomedchemau.4c00108. eCollection 2025 Feb 19.

本文引用的文献

7
Remote C-H Functionalization via Selective Hydrogen Atom Transfer.通过选择性氢原子转移实现远程C-H官能团化
Synthesis (Stuttg). 2018 Apr;50(8):1569-1586. doi: 10.1055/s-0036-1591930. Epub 2018 Feb 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验