Yao Yuechao, Jiang Tao, Lim Sung Yul, Frandsen Cathrine, Li Zhangjian, Dou Yibo, Wu Feiyan, Qin Jibo, Zou Jizhao, Stamate Eugen, Zhang Wenjing
Department of Environmental and Resource Engineering, Technical University of Denmark, Miljøvej 115, Kgs. Lyngby, 2800, Denmark.
Department of Chemistry and Research Institute for Basic Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
Small. 2023 Dec;19(49):e2304655. doi: 10.1002/smll.202304655. Epub 2023 Aug 17.
Developing efficient and low-cost noble-free metal electrocatalysts is an urgent requirement. Herein, a one-step, solid-state template-assisted method for fabricating isolated half-metallic diatomic M, Zn─N─C (M═Fe, Co, and Ni) catalysts is reported. In particular, the fabricated Fe, Zn─N─C structure exhibits superior oxygen reduction reaction capabilities with a half-wave potential of 0.867 V versus RHE. The Mossbauer spectra reveal that the Fe, Zn─N─C half-metallic diatomic catalyst has a large proportion of the D2 site (ferrous iron with a medium spin state). Density functional theory (DFT) reveals that in Fe, Zn─N─C structures, the zinc sites play a unique role in accelerating the protonation process of O in ORR. In assembled zinc-air batteries, a maximum power density of 138 mW cm and a capacity of 748 mAh g zn can be obtained. This work fabricates a series of efficient M, Zn─N─C diatomic electrocatalysts, and the developed solid-state reaction method can hopefully apply in other energy conversion and storage fields.
开发高效且低成本的无贵金属电催化剂是一项迫切需求。在此,报道了一种用于制备孤立的半金属双原子M、Zn─N─C(M═Fe、Co和Ni)催化剂的一步法固态模板辅助方法。特别地,制备的Fe、Zn─N─C结构表现出优异的氧还原反应能力,相对于可逆氢电极的半波电位为0.867 V。穆斯堡尔谱表明,Fe、Zn─N─C半金属双原子催化剂具有很大比例的D2位点(中等自旋态的亚铁)。密度泛函理论(DFT)表明,在Fe、Zn─N─C结构中,锌位点在加速氧还原反应中O的质子化过程中发挥独特作用。在组装的锌空气电池中,可获得138 mW cm的最大功率密度和748 mAh g锌的容量。这项工作制备了一系列高效的M、Zn─N─C双原子电催化剂,所开发的固态反应方法有望应用于其他能量转换和存储领域。