Suppr超能文献

双激酶双重靶向的生物物理框架。

A biophysical framework for double-drugging kinases.

机构信息

Department of Biochemistry, Brandeis University, Waltham, MA 02454.

HHMI, Brandeis University, Waltham, MA 02454.

出版信息

Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2304611120. doi: 10.1073/pnas.2304611120. Epub 2023 Aug 17.

Abstract

Selective orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing cooperativity. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the double-drugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe a fully closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light on the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of double-drugging strategies.

摘要

由于激酶的保守活性位点结构和耐药突变体的出现,选择性的变构激酶抑制一直具有挑战性。同时抑制变构和远位变构位点,我们称之为“双重药物治疗”,最近已被证明可有效克服耐药性。然而,对于变构调节剂之间的协同性质的详细生物物理特征尚未进行。在这里,我们使用等温滴定量热法、荧光共振能量转移、偶联酶测定法和 X 射线晶体学,为激酶的双重药物治疗提供了一个定量框架。我们发现,Aurora A 激酶 (AurA) 和 Abelson 激酶 (Abl) 与不同的变构和变构调节剂组合具有正协同和负协同性。我们发现构象平衡转移是控制协同性的主要原则。值得注意的是,对于这两种激酶,我们发现当以组合方式使用以将激酶活性抑制到临床相关的抑制水平时,所需的变构和变构药物剂量会协同减少。双重药物治疗激酶复合物的 X 射线晶体结构揭示了变构和变构抑制剂双重药物治疗 AurA 和 Abl 的协同性质的分子原理。最后,当 Abl 与一对正协同的变构和变构调节剂结合时,我们观察到 Abl 处于完全闭合构象,这揭示了先前解决的闭合 Abl 结构中令人困惑的异常现象。总之,我们的数据为双重药物治疗策略的合理设计和评估提供了机制和结构见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f64a/10450579/71da289b3ad9/pnas.2304611120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验