Kim C, Ludewig H, Hadzipasic A, Kutter S, Nguyen V, Kern D
Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA.
bioRxiv. 2023 Mar 18:2023.03.17.533217. doi: 10.1101/2023.03.17.533217.
Orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing this cooperative effect. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the doubledrugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe the first fully-closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light onto the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of doubledrugging strategies.
由于激酶的活性位点结构保守以及耐药突变体的出现,对激酶进行正构抑制一直具有挑战性。同时抑制远处的正构和别构位点(我们称之为“双重靶向”)最近已被证明在克服耐药性方面是有效的。然而,尚未对正构和别构调节剂之间协同性质进行详细的生物物理表征。在这里,我们提供了一个用于激酶双重靶向的定量框架,采用等温滴定量热法、福斯特共振能量转移、偶联酶测定和X射线晶体学。我们通过正构和别构调节剂的不同组合,识别出极光激酶A(AurA)和阿贝尔森激酶(Abl)的正协同和负协同作用。我们发现构象平衡的转变是控制这种协同效应的主要原理。值得注意的是,对于这两种激酶,我们发现当联合使用以将激酶活性抑制到临床相关抑制水平时,所需的正构和别构药物剂量会协同降低。双重靶向激酶复合物的X射线晶体结构揭示了AurA和Abl与正构和别构抑制剂双重靶向协同性质背后的分子原理。最后,我们观察到Abl与一对正协同的正构和别构调节剂结合时的首个完全封闭构象,为先前解析的封闭Abl结构的令人困惑的异常现象提供了线索。总的来说,我们的数据为双重靶向策略的合理设计和评估提供了机制和结构方面的见解。