Suppr超能文献

基于潜在表示学习的压力驱动软执行器气动与液压双驱动控制器

Latent Representation-Based Learning Controller for Pneumatic and Hydraulic Dual Actuation of Pressure-Driven Soft Actuators.

作者信息

Sugiyama Taku, Kutsuzawa Kyo, Owaki Dai, Hayashibe Mitsuhiro

机构信息

Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.

出版信息

Soft Robot. 2024 Feb;11(1):105-117. doi: 10.1089/soro.2022.0224. Epub 2023 Aug 17.

Abstract

The pneumatic and hydraulic dual actuation of pressure-driven soft actuators (PSAs) is promising because of their potential to develop novel practical soft robots and expand the range of soft robot applications. However, the physical characteristics of air and water are largely different, which makes it challenging to quickly adapt to a selected actuation method and achieve method-independent accurate control performance. Herein, we propose a novel LAtent Representation-based Feedforward Neural Network (LAR-FNN) for dual actuation. The LAR-FNN consists of an autoencoder (AE) and a feedforward neural network (FNN). The AE generates a latent representation of a PSA from a 30-s stairstep response. Subsequently, the FNN provides an individual inverse model of the target PSA and calculates feedforward control input by using the latent representation. The experimental results with PSAs demonstrate that the LAR-FNN can meet the requirements of dual actuation control (i.e., accurate control performance regardless of the actuation method with a short adaptation time) with a single neural network. The results suggest that a LAR-FNN can contribute to soft dual-actuation robot development and the field of soft robotics.

摘要

压力驱动软驱动器(PSA)的气动和液压双驱动具有发展新型实用软机器人并扩大软机器人应用范围的潜力,因此前景广阔。然而,空气和水的物理特性差异很大,这使得快速适应选定的驱动方法并实现与方法无关的精确控制性能具有挑战性。在此,我们提出了一种用于双驱动的基于潜在表示的新型前馈神经网络(LAR-FNN)。LAR-FNN由一个自动编码器(AE)和一个前馈神经网络(FNN)组成。AE从30秒的阶梯响应中生成PSA的潜在表示。随后,FNN提供目标PSA的单独逆模型,并使用潜在表示计算前馈控制输入。PSA的实验结果表明,LAR-FNN可以通过单个神经网络满足双驱动控制的要求(即,无论驱动方法如何,都具有准确的控制性能且适应时间短)。结果表明,LAR-FNN可以为软双驱动机器人的发展和软机器人领域做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e73/10880272/c96af8f15a5c/soro.2022.0224_figure1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验