Suppr超能文献

基于学习到的非线性离散时间模型的软驱动器模型控制

Model-Based Control of Soft Actuators Using Learned Non-linear Discrete-Time Models.

作者信息

Hyatt Phillip, Wingate David, Killpack Marc D

机构信息

Robotics and Dynamics Lab, Department of Mechanical Engineering, Brigham Young University, Provo, UT, United States.

Perception, Control, Cognition Lab, Department of Computer Science, Brigham Young University, Provo, UT, United States.

出版信息

Front Robot AI. 2019 Apr 9;6:22. doi: 10.3389/frobt.2019.00022. eCollection 2019.

Abstract

Soft robots have the potential to significantly change the way that robots interact with the environment and with humans. However, accurately modeling soft robot and soft actuator dynamics in order to perform model-based control can be extremely difficult. Deep neural networks are a powerful tool for modeling systems with complex dynamics such as the pneumatic, continuum joint, six degree-of-freedom robot shown in this paper. Unfortunately it is also difficult to apply standard model-based control techniques using a neural net. In this work, we show that the gradients used within a neural net to relate system states and inputs to outputs can be used to formulate a linearized discrete state space representation of the system. Using the state space representation, model predictive control (MPC) was developed with a six degree of freedom pneumatic robot with compliant plastic joints and rigid links. Using this neural net model, we were able to achieve an average steady state error across all joints of approximately 1 and 2° with and without integral control respectively. We also implemented a first-principles based model for MPC and the learned model performed better in terms of steady state error, rise time, and overshoot. Overall, our results show the potential of combining empirical modeling approaches with model-based control for soft robots and soft actuators.

摘要

软体机器人有潜力显著改变机器人与环境以及与人类交互的方式。然而,要准确地对软体机器人和软体致动器的动力学进行建模以实现基于模型的控制可能极其困难。深度神经网络是对具有复杂动力学的系统(如本文所示的气动、连续体关节、六自由度机器人)进行建模的强大工具。不幸的是,使用神经网络应用标准的基于模型的控制技术也很困难。在这项工作中,我们表明神经网络中用于将系统状态和输入与输出相关联的梯度可用于构建系统的线性化离散状态空间表示。利用该状态空间表示,针对具有柔顺塑料关节和刚性连杆的六自由度气动机器人开发了模型预测控制(MPC)。使用这个神经网络模型,在有积分控制和没有积分控制的情况下,我们分别能够在所有关节上实现约1°和2°的平均稳态误差。我们还为MPC实现了一个基于第一原理的模型,并且在稳态误差、上升时间和超调方面,学习到的模型表现更好。总体而言,我们的结果展示了将经验建模方法与基于模型的控制相结合用于软体机器人和软体致动器的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7ca/7805923/f4795b3161fa/frobt-06-00022-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验