Chakraborty Sandipan, Saha Chiranjeet
Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
Mol Inform. 2023 Oct;42(10):e2300055. doi: 10.1002/minf.202300055. Epub 2023 Aug 31.
SARS-CoV-2 gained crucial mutations at the receptor binding domain (RBD) that often changed the course of the pandemic leading to new waves with increased case fatality. Variants are observed with enhanced transmission and immune invasion abilities. Thus, predicting future variants with enhanced transmission ability is a problem of utmost research interest. Here, we have developed a multi-tier exhaustive SARS-CoV-2 mutation screening platform combining MM/GBSA, extensive molecular dynamics simulations, and steered molecular dynamics to identify RBD mutants with enhanced ACE2 binding capability. We have identified four RBM mutations (F490K, S494K, G504F, and the P499L) with significantly higher ACE2 binding abilities than wild-type RBD. Compared to wild-type RBD, they all form stable complexes with more hydrogen bonds and salt-bridge interactions with ACE2. Our simulation data suggest that these mutations allosterically alter the packing of the RBM interface of the RBD-ACE2 complex. As a result, the rupture force required to break the RBD-ACE2 contacts is significantly higher for these mutants.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)在受体结合域(RBD)获得了关键突变,这些突变常常改变疫情的发展进程,导致新的疫情浪潮,病死率增加。观察到的变异株具有增强的传播和免疫侵袭能力。因此,预测具有增强传播能力的未来变异株是一个极具研究兴趣的问题。在此,我们开发了一个多层详尽的SARS-CoV-2突变筛选平台,该平台结合了MM/GBSA、广泛的分子动力学模拟和定向分子动力学,以识别具有增强的血管紧张素转换酶2(ACE2)结合能力的RBD突变体。我们已经鉴定出四个受体结合基序(RBM)突变(F490K、S494K、G504F和P499L),它们与ACE2的结合能力明显高于野生型RBD。与野生型RBD相比,它们都与ACE2形成更稳定的复合物,具有更多的氢键和盐桥相互作用。我们的模拟数据表明,这些突变通过变构改变了RBD-ACE2复合物RBM界面的堆积。因此,这些突变体打破RBD-ACE2接触所需的断裂力明显更高。