Suppr超能文献

基于宏基因组学分析的盐碱土中微生物对甲烷代谢的调控机制

Mechanism of microbial regulation on methane metabolism in saline-alkali soils based on metagenomics analysis.

作者信息

Yang Chao, Chen Yitong, Zhang Qian, Qie Xihu, Chen Jinxia, Che Yajuan, Lv Dantong, Xu Xinyu, Gao Yuxuan, Wang Zengyu, Sun Juan

机构信息

Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.

Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.

出版信息

J Environ Manage. 2023 Nov 1;345:118771. doi: 10.1016/j.jenvman.2023.118771. Epub 2023 Aug 15.

Abstract

Saline-alkali soils constitute a globally important carbon pool that plays a critical role in soil carbon dioxide (CO) and methane (CH) fluxes. However, the relative importance of microorganisms in the regulation of CH emissions under elevated salinity remains unclear. Here, we report the composition of CH production and oxidation microbial communities under five different salinity levels in the Yellow River Delta, China. This study also obtained the gene number of microbial CH metabolism via testing the soil metagenomes, and further investigated the key soil factors to determine the regulation mechanism. Spearman correlation analysis showed that the soil electrical conductivity, salt content, and Na, and SO concentrations showed significantly negative correlations with the CO and CH emission rates, while the NO-N concentration and NO/NO ratio showed significantly positive correlations with the CO and CH emission rates. Metabolic pathway analysis showed that the mcrA gene for CH production was highest in low-salinity soils. By contrast, the relative abundances of the fwdA, ftr, mch, and mer genes related to the CO pathway increased significantly with rising salinity. Regarding CH oxidation processes, the relative abundances of the pmoA, mmoB, and mdh1 genes transferred from CH to formaldehyde decreased significantly from the control to the extreme-salinity plot. The greater abundance and rapid increase of methanotrophic bacteria compared with the lower abundance and slow increase in methanogenic archaea communities in saline-alkali soils may have increased CH oxidation and reduced CH production in this study. Only CO emissions positively affected CH emissions from low- to medium-salinity soils, while the diversities of CH production and oxidation jointly influenced CH emissions from medium- to extreme-salinity plots. Hence, future investigations will also explore more metabolic pathways for CH emissions from different types of saline-alkali lands and combine the key soil enzymes and regulated biotic or abiotic factors to enrich the CH metabolism pathway in saline-alkali soils.

摘要

盐碱土是全球重要的碳库,在土壤二氧化碳(CO)和甲烷(CH)通量中起着关键作用。然而,在盐度升高的情况下,微生物在调节CH排放中的相对重要性仍不清楚。在此,我们报告了中国黄河三角洲五种不同盐度水平下CH产生和氧化微生物群落的组成。本研究还通过测试土壤宏基因组获得了微生物CH代谢的基因数量,并进一步研究了关键土壤因子以确定调控机制。Spearman相关性分析表明,土壤电导率、盐分含量以及Na和SO浓度与CO和CH排放速率呈显著负相关,而NO-N浓度和NO/NO比率与CO和CH排放速率呈显著正相关。代谢途径分析表明,CH产生的mcrA基因在低盐度土壤中最高。相比之下,与CO途径相关的fwdA、ftr、mch和mer基因的相对丰度随着盐度的升高而显著增加。关于CH氧化过程,从对照到极端盐度地块,从CH转移到甲醛的pmoA、mmoB和mdh1基因的相对丰度显著降低。在盐碱土中,与产甲烷古菌群落较低的丰度和缓慢的增加相比,甲烷氧化细菌丰度更高且增加更快,这可能在本研究中增加了CH氧化并减少了CH产生。只有CO排放对低至中等盐度土壤中的CH排放有正向影响,而CH产生和氧化的多样性共同影响中至极端盐度地块的CH排放。因此,未来的研究还将探索不同类型盐碱地CH排放的更多代谢途径,并结合关键土壤酶和受调控的生物或非生物因子,以丰富盐碱土中的CH代谢途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验