Otto-von-Guericke University, 39120 Magdeburg, Germany.
Zurich Center for Neuroeconomics, Departement of Economics, University of Zurich, 8006 Zurich, Switzerland.
J Neurosci. 2023 Sep 6;43(36):6306-6319. doi: 10.1523/JNEUROSCI.0452-23.2023. Epub 2023 Aug 17.
Transcutaneous auricular vagus nerve stimulation (taVNS) has been proposed to activate the locus ceruleus-noradrenaline (LC-NA) system. However, previous studies failed to find consistent modulatory effects of taVNS on LC-NA biomarkers. Previous studies suggest that phasic taVNS may be capable of modulating LC-NA biomarkers such as pupil dilation and alpha oscillations. However, it is unclear whether these effects extend beyond pure sensory vagal nerve responses. Critically, the potential of the pupillary light reflex as an additional taVNS biomarker has not been explored so far. Here, we applied phasic active and sham taVNS in 29 subjects (16 female, 13 male) while they performed an emotional Stroop task (EST) and a passive pupil light reflex task (PLRT). We recorded pupil size and brain activity dynamics using a combined Magnetoencephalography (MEG) and pupillometry design. Our results show that phasic taVNS significantly increased pupil dilation and performance during the EST. During the PLRT, active taVNS reduced and delayed pupil constriction. In the MEG, taVNS increased frontal-midline theta and alpha power during the EST, whereas occipital alpha power was reduced during both the EST and PLRT. Our findings provide evidence that phasic taVNS systematically modulates behavioral, pupillary, and electrophysiological parameters of LC-NA activity during cognitive processing. Moreover, we demonstrate for the first time that the pupillary light reflex can be used as a simple and effective proxy of taVNS efficacy. These findings have important implications for the development of noninvasive neuromodulation interventions for various cognitive and clinical applications. taVNS has gained increasing attention as a noninvasive neuromodulation technique and is widely used in clinical and nonclinical research. Nevertheless, the exact mechanism of action of taVNS is not yet fully understood. By assessing physiology and behavior in a response conflict task in healthy humans, we demonstrate the first successful application of a phasic, noninvasive vagus nerve stimulation to improve cognitive control and to systematically modulate pupillary and electrophysiological markers of the noradrenergic system. Understanding the mechanisms of action of taVNS could optimize future clinical applications and lead to better treatments for mental disorders associated with noradrenergic dysfunction. In addition, we present a new taVNS-sensitive pupillary measure representing an easy-to-use biomarker for future taVNS studies.
经皮耳迷走神经刺激(taVNS)被提议用于激活蓝斑-去甲肾上腺素(LC-NA)系统。然而,先前的研究未能发现 taVNS 对 LC-NA 生物标志物的一致调节作用。先前的研究表明,相位 taVNS 可能能够调节 LC-NA 生物标志物,如瞳孔扩张和 alpha 振荡。然而,目前尚不清楚这些效应是否超出了单纯的感觉迷走神经反应。至关重要的是,瞳孔光反射作为附加 taVNS 生物标志物的潜力迄今为止尚未得到探索。在这里,我们在 29 名受试者(16 名女性,13 名男性)中应用了相位主动和假 taVNS,同时他们执行了情绪 Stroop 任务(EST)和被动瞳孔光反射任务(PLRT)。我们使用组合的脑磁图(MEG)和瞳孔计设计记录了瞳孔大小和大脑活动动力学。我们的结果表明,相位 taVNS 显著增加了 EST 期间的瞳孔扩张和表现。在 PLRT 期间,主动 taVNS 减少并延迟了瞳孔收缩。在 MEG 中,taVNS 在 EST 期间增加了额中线 theta 和 alpha 功率,而在 EST 和 PLRT 期间,枕部 alpha 功率降低。我们的研究结果提供了证据,表明相位 taVNS 系统地调节认知加工过程中 LC-NA 活动的行为、瞳孔和电生理参数。此外,我们首次证明瞳孔光反射可以用作 taVNS 疗效的简单有效替代物。这些发现对于开发用于各种认知和临床应用的非侵入性神经调节干预措施具有重要意义。taVNS 作为一种非侵入性神经调节技术受到越来越多的关注,并广泛应用于临床和非临床研究。然而,taVNS 的确切作用机制尚不完全清楚。通过在健康人类中评估反应冲突任务的生理学和行为,我们首次成功应用了一种相位、非侵入性迷走神经刺激来改善认知控制,并系统地调节瞳孔和去甲肾上腺素系统的电生理标志物。了解 taVNS 的作用机制可以优化未来的临床应用,并为与去甲肾上腺素功能障碍相关的精神障碍提供更好的治疗方法。此外,我们提出了一种新的 taVNS 敏感的瞳孔测量方法,代表了未来 taVNS 研究的一种易于使用的生物标志物。
J Neural Eng. 2025-6-13
Biomedicines. 2024-2-9
Trends Cogn Sci. 2022-1