Suppr超能文献

用于砷生物转化的RSC3中砷酸盐还原酶的结构功能分析及分子表征

Structural-functional analysis and molecular characterization of arsenate reductase from RSC3 for arsenic biotransformation.

作者信息

Bhati Reeta, Nigam Arti, Ahmad Shaban, Raza Khalid, Singh Rajni

机构信息

Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India.

Institute of Home Economics, University of Delhi, New Delhi, 110016 India.

出版信息

3 Biotech. 2023 Sep;13(9):305. doi: 10.1007/s13205-023-03730-9. Epub 2023 Aug 15.

Abstract

UNLABELLED

RSC3 isolated from an industrial pesticide site transformed arsenate into arsenite. The arsenate is transported by membrane-bound phosphate transporter and transformed to arsenite by arsenate reductase (C). RSC3 produced an arsenate reductase enzyme with a maximum activity of 354 U after 72 h of incubation. Arsenate reductase was found to be active and stable at a wide range of temperatures (20 and 45 °C) and pH (5-10), with maximum activity at 35 °C and pH 7.0. The arsenate reductase protein was further characterised molecularly using different bioinformatics tools. The 3D structure of ArsC protein was predicted by homology modelling and validated by the Ramachandran plot with 91.9% residues in the most favoured region. ArsC protein of RSC3 revealed structural homology with ArsC from PDB ID: 1S3C. The gene ontology results also showed that the ArsC protein had a molecular functionality of the arsenate reductase (glutaredoxin) activity and the biological function of cellular response to DNA damage stimulus. Molecular docking analysis of 3D structures using AutoDock vina-1.5.7 server predicted four ligand binding active site residues at Gln70, Asp68, Leu68, and Leu63. Strong ArsC-arsenate ion interaction was observed with binding energy -1.03 kcal/mol, indicating significant arsenate reductase activity and specificity of ArsC protein. On the basis of molecular dynamics simulation analysis, the RMSD and RMSF values revealed the stability of ArsC protein from RSC3.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13205-023-03730-9.

摘要

未标记

从一个工业农药场地分离出的RSC3可将砷酸盐转化为亚砷酸盐。砷酸盐由膜结合磷酸盐转运蛋白运输,并通过砷酸盐还原酶(C)转化为亚砷酸盐。RSC3在培养72小时后产生了一种砷酸盐还原酶,其最大活性为354 U。发现砷酸盐还原酶在广泛的温度范围(20至45°C)和pH范围(5 - 10)内具有活性且稳定,在35°C和pH 7.0时活性最高。使用不同的生物信息学工具对砷酸盐还原酶蛋白进行了进一步的分子表征。通过同源建模预测了ArsC蛋白的三维结构,并通过拉氏图进行了验证,91.9%的残基处于最有利区域。RSC3的ArsC蛋白与PDB ID:1S3C的ArsC具有结构同源性。基因本体结果还表明,ArsC蛋白具有砷酸盐还原酶(谷氧还蛋白)活性的分子功能以及对DNA损伤刺激的细胞反应的生物学功能。使用AutoDock vina - 1.5.7服务器对三维结构进行分子对接分析,预测在Gln70、Asp68、Leu68和Leu63处有四个配体结合活性位点残基。观察到ArsC与砷酸根离子之间有强烈的相互作用,结合能为 - 1.03 kcal/mol,表明ArsC蛋白具有显著的砷酸盐还原酶活性和特异性。基于分子动力学模拟分析,RMSD和RMSF值揭示了RSC3的ArsC蛋白的稳定性。

补充信息

在线版本包含可在10.1007/s13205 - 023 - 03730 - 9获取的补充材料。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验