Suppr超能文献

对来自砷污染地区的RSC3外排介导的砷抗性及生物转化潜力的深入研究

An Insight into Efflux-Mediated Arsenic Resistance and Biotransformation Potential of RSC3 from Arsenic Polluted Area.

作者信息

Bhati Reeta, Sreedharan Smitha Mony, Rizvi Asfa, Khan Mohammad Saghir, Singh Rajni

机构信息

Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India.

Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062 India.

出版信息

Indian J Microbiol. 2022 Sep;62(3):456-467. doi: 10.1007/s12088-022-01028-7. Epub 2022 Jun 1.

Abstract

Indiscriminate discharge of heavy metals/metalloids from different sources into the sustainable agro-ecosystem is a major global concern for food security and human health. Arsenic (As), categorized as group one human carcinogen is a quintessential toxic metalloid that alters the microbial compositions and functions, induce physiological and metabolic changes in plants and contaminate surface/ground water. The management of arsenic toxicity, therefore, becomes imminent. Acknowledging the arsenic threat, the study was aimed at identifying arsenic resistant bacteria and evaluating its arsenic removal/detoxification potential. Of the total 118 bacterial isolates recovered from arsenic rich environment, the bacterial strain RSC3 demonstrating highest As tolerance was identified as by 16S rRNA gene sequence analysis. tolerated high concentration (6000 ppm) of As and exhibited 0.55 h of specific growth rate as calculated from growth kinetics data. Strain RSC3 also displayed varying level of resistance to other heavy metals and many antibacterial drugs in plate bioassay. The bacterial strain RSC3 possessed gene () which causes transformation of arsenate to arsenite. The arsenate uptake and efflux of the bacterial cells was revealed by high throughput techniques such as AAS, SEM/TEM and EDX. The simultaneous As reducing ability, and multi metal/multi-antibiotics resistance potentials of provides a promising option in the microbes based remediation of As contaminated environments.

摘要

来自不同来源的重金属/类金属无节制地排放到可持续农业生态系统中,是全球粮食安全和人类健康的一个主要问题。砷(As)被归类为一类人类致癌物,是一种典型的有毒类金属,它会改变微生物的组成和功能,诱导植物发生生理和代谢变化,并污染地表水/地下水。因此,砷毒性的管理迫在眉睫。认识到砷的威胁,本研究旨在鉴定抗砷细菌并评估其去除/解毒砷的潜力。从富含砷的环境中回收的118株细菌分离物中,通过16S rRNA基因序列分析确定表现出最高砷耐受性的细菌菌株RSC3为[具体细菌种类未给出]。该菌株耐受高浓度(6000 ppm)的砷,根据生长动力学数据计算,其比生长速率为0.55 h。在平板生物测定中,菌株RSC3对其他重金属和许多抗菌药物也表现出不同程度的抗性。该细菌菌株RSC3拥有导致砷酸盐转化为亚砷酸盐的基因([具体基因名称未给出])。通过原子吸收光谱法(AAS)、扫描电子显微镜/透射电子显微镜(SEM/TEM)和能量散射X射线光谱法(EDX)等高通量技术揭示了细菌细胞对砷的吸收和外排情况。该菌株同时具有还原砷的能力以及对多种金属/多种抗生素的抗性,为基于微生物的砷污染环境修复提供了一个有前景的选择。

相似文献

3
Arsenic efflux in Enterobacter cloacae RSN3 isolated from arsenic-rich soil.从富砷土壤中分离出的阴沟肠杆菌RSN3中的砷流出
Folia Microbiol (Praha). 2021 Apr;66(2):189-196. doi: 10.1007/s12223-020-00832-2. Epub 2020 Oct 31.
7
Role of arsenic and its resistance in nature.砷的作用及其在自然界中的抗性。
Can J Microbiol. 2011 Oct;57(10):769-74. doi: 10.1139/w11-062. Epub 2011 Sep 21.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验