Jiang Yangyang Kate, Medley Eleanor A, Brown Grant W
Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
Genetics. 2023 Nov 1;225(3). doi: 10.1093/genetics/iyad153.
Upon DNA replication stress, cells utilize the postreplication repair pathway to repair single-stranded DNA and maintain genome integrity. Postreplication repair is divided into 2 branches: error-prone translesion synthesis, signaled by proliferating cell nuclear antigen (PCNA) monoubiquitination, and error-free template switching, signaled by PCNA polyubiquitination. In Saccharomyces cerevisiae, Rad5 is involved in both branches of repair during DNA replication stress. When the PCNA polyubiquitination function of Rad5 s disrupted, Rad5 recruits translesion synthesis polymerases to stalled replication forks, resulting in mutagenic repair. Details of how mutagenic repair is carried out, as well as the relationship between Rad5-mediated mutagenic repair and the canonical PCNA-mediated mutagenic repair, remain to be understood. We find that Rad5-mediated mutagenic repair requires the translesion synthesis polymerase ζ but does not require other yeast translesion polymerase activities. Furthermore, we show that Rad5-mediated mutagenic repair is independent of PCNA binding by Rev1 and so is separable from canonical mutagenic repair. In the absence of error-free template switching, both modes of mutagenic repair contribute additively to replication stress response in a replication timing-independent manner. Cellular contexts where error-free template switching is compromised are not simply laboratory phenomena, as we find that a natural variant in RAD5 is defective in PCNA polyubiquitination and therefore defective in error-free repair, resulting in Rad5- and PCNA-mediated mutagenic repair. Our results highlight the importance of Rad5 in regulating spontaneous mutagenesis and genetic diversity in S. cerevisiae through different modes of postreplication repair.
在DNA复制应激时,细胞利用复制后修复途径来修复单链DNA并维持基因组完整性。复制后修复分为两个分支:由增殖细胞核抗原(PCNA)单泛素化信号传导的易错跨损伤合成,以及由PCNA多泛素化信号传导的无错模板切换。在酿酒酵母中,Rad5参与DNA复制应激期间的两个修复分支。当Rad5的PCNA多泛素化功能被破坏时,Rad5会将跨损伤合成聚合酶招募到停滞的复制叉处,导致诱变修复。诱变修复如何进行的细节,以及Rad5介导的诱变修复与经典的PCNA介导的诱变修复之间的关系,仍有待了解。我们发现Rad5介导的诱变修复需要跨损伤合成聚合酶ζ,但不需要其他酵母跨损伤聚合酶活性。此外,我们表明Rad5介导的诱变修复独立于Rev1与PCNA的结合,因此与经典诱变修复可分离。在没有无错模板切换的情况下,两种诱变修复模式以复制时间无关的方式对复制应激反应产生累加作用。无错模板切换受损的细胞环境并非仅仅是实验室现象,因为我们发现RAD5中的一个天然变体在PCNA多泛素化方面存在缺陷,因此在无错修复方面存在缺陷,从而导致Rad5和PCNA介导的诱变修复。我们的结果强调了Rad5在通过不同的复制后修复模式调节酿酒酵母中的自发诱变和遗传多样性方面的重要性。