Suppr超能文献

一种用于癌症亚型分类和生存预测的去噪多组学整合框架。

A denoised multi-omics integration framework for cancer subtype classification and survival prediction.

机构信息

Shanghai Artificial Intelligence Laboratory, Shanghai, China.

Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China.

出版信息

Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad304.

Abstract

The availability of high-throughput sequencing data creates opportunities to comprehensively understand human diseases as well as challenges to train machine learning models using such high dimensions of data. Here, we propose a denoised multi-omics integration framework, which contains a distribution-based feature denoising algorithm, Feature Selection with Distribution (FSD), for dimension reduction and a multi-omics integration framework, Attention Multi-Omics Integration (AttentionMOI) to predict cancer prognosis and identify cancer subtypes. We demonstrated that FSD improved model performance either using single omic data or multi-omics data in 15 The Cancer Genome Atlas Program (TCGA) cancers for survival prediction and kidney cancer subtype identification. And our integration framework AttentionMOI outperformed machine learning models and current multi-omics integration algorithms with high dimensions of features. Furthermore, FSD identified features that were associated to cancer prognosis and could be considered as biomarkers.

摘要

高通量测序数据的可用性为全面了解人类疾病创造了机会,但也为使用如此高维数据训练机器学习模型带来了挑战。在这里,我们提出了一个去噪多组学整合框架,其中包含一个基于分布的特征去噪算法 Feature Selection with Distribution(FSD),用于降维和一个多组学整合框架 Attention Multi-Omics Integration(AttentionMOI),用于预测癌症预后和识别癌症亚型。我们证明了 FSD 无论是在使用单一组学数据还是多组学数据进行生存预测和肾癌亚型识别方面,都可以提高 15 个 TCGA 癌症中的模型性能。我们的整合框架 AttentionMOI 优于具有高维特征的机器学习模型和当前的多组学整合算法。此外,FSD 确定了与癌症预后相关的特征,这些特征可以被视为生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验