State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
Plant Commun. 2024 Sep 9;5(9):101002. doi: 10.1016/j.xplc.2024.101002. Epub 2024 Jun 13.
Despite considerable advances in extracting crucial insights from bio-omics data to unravel the intricate mechanisms underlying complex traits, the absence of a universal multi-modal computational tool with robust interpretability for accurate phenotype prediction and identification of trait-associated genes remains a challenge. This study introduces the dual-extraction modeling (DEM) approach, a multi-modal deep-learning architecture designed to extract representative features from heterogeneous omics datasets, enabling the prediction of complex trait phenotypes. Through comprehensive benchmarking experiments, we demonstrate the efficacy of DEM in classification and regression prediction of complex traits. DEM consistently exhibits superior accuracy, robustness, generalizability, and flexibility. Notably, we establish its effectiveness in predicting pleiotropic genes that influence both flowering time and rosette leaf number, underscoring its commendable interpretability. In addition, we have developed user-friendly software to facilitate seamless utilization of DEM's functions. In summary, this study presents a state-of-the-art approach with the ability to effectively predict qualitative and quantitative traits and identify functional genes, confirming its potential as a valuable tool for exploring the genetic basis of complex traits.
尽管在从生物组学数据中提取关键见解以揭示复杂性状背后的复杂机制方面取得了相当大的进展,但缺乏一种具有强大可解释性的通用多模态计算工具,以实现准确的表型预测和鉴定与性状相关的基因,这仍然是一个挑战。本研究介绍了双重提取建模(DEM)方法,这是一种多模态深度学习架构,旨在从异构组学数据集中提取代表性特征,从而实现复杂性状表型的预测。通过全面的基准测试实验,我们证明了 DEM 在复杂性状分类和回归预测中的有效性。DEM 始终表现出较高的准确性、鲁棒性、通用性和灵活性。值得注意的是,我们证实了它在预测影响开花时间和莲座叶数量的多效基因方面的有效性,突出了其令人赞赏的可解释性。此外,我们还开发了用户友好的软件,以方便无缝利用 DEM 的功能。总之,本研究提出了一种最先进的方法,能够有效地预测定性和定量性状,并鉴定功能基因,证实了它作为探索复杂性状遗传基础的有价值工具的潜力。