Suppr超能文献

HimGNN:一种用于属性预测的新型分层分子图表示学习框架。

HimGNN: a novel hierarchical molecular graph representation learning framework for property prediction.

作者信息

Han Shen, Fu Haitao, Wu Yuyang, Zhao Ganglan, Song Zhenyu, Huang Feng, Zhang Zhongfei, Liu Shichao, Zhang Wen

机构信息

College of Informatics, Huazhong Agricultural University, People's Republic of China.

College of Plant Science and Technology, Huazhong Agricultural University, People's Republic of China.

出版信息

Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad305.

Abstract

Accurate prediction of molecular properties is an important topic in drug discovery. Recent works have developed various representation schemes for molecular structures to capture different chemical information in molecules. The atom and motif can be viewed as hierarchical molecular structures that are widely used for learning molecular representations to predict chemical properties. Previous works have attempted to exploit both atom and motif to address the problem of information loss in single representation learning for various tasks. To further fuse such hierarchical information, the correspondence between learned chemical features from different molecular structures should be considered. Herein, we propose a novel framework for molecular property prediction, called hierarchical molecular graph neural networks (HimGNN). HimGNN learns hierarchical topology representations by applying graph neural networks on atom- and motif-based graphs. In order to boost the representational power of the motif feature, we design a Transformer-based local augmentation module to enrich motif features by introducing heterogeneous atom information in motif representation learning. Besides, we focus on the molecular hierarchical relationship and propose a simple yet effective rescaling module, called contextual self-rescaling, that adaptively recalibrates molecular representations by explicitly modelling interdependencies between atom and motif features. Extensive computational experiments demonstrate that HimGNN can achieve promising performances over state-of-the-art baselines on both classification and regression tasks in molecular property prediction.

摘要

准确预测分子性质是药物发现中的一个重要课题。最近的研究工作已经开发出各种分子结构表示方案,以捕捉分子中的不同化学信息。原子和基序可以被视为层次化的分子结构,广泛用于学习分子表示以预测化学性质。先前的工作试图利用原子和基序来解决各种任务中单一表示学习中的信息丢失问题。为了进一步融合这种层次化信息,应该考虑从不同分子结构中学习到的化学特征之间的对应关系。在此,我们提出了一种用于分子性质预测的新颖框架,称为层次化分子图神经网络(HimGNN)。HimGNN通过在基于原子和基序的图上应用图神经网络来学习层次化拓扑表示。为了增强基序特征的表示能力,我们设计了一个基于Transformer的局部增强模块,通过在基序表示学习中引入异构原子信息来丰富基序特征。此外,我们关注分子层次关系,提出了一个简单而有效的重缩放模块,称为上下文自缩放,通过显式建模原子和基序特征之间的相互依赖关系来自适应地重新校准分子表示。广泛的计算实验表明,在分子性质预测的分类和回归任务中,HimGNN相对于最先进的基线可以取得有前景的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验