IEEE J Biomed Health Inform. 2024 Jul;28(7):4295-4305. doi: 10.1109/JBHI.2024.3384238. Epub 2024 Jul 2.
Accurate prediction of small molecule modulators targeting protein-protein interactions (PPIMs) remains a significant challenge in drug discovery. Existing machine learning-based models rely on manual feature engineering, which is tedious and task-specific. Recently, deep learning models based on graph neural networks have made remarkable progress in molecular representation learning. However, many graph-based approaches ignore molecular hierarchical structure modeling guided by domain knowledge. In chemistry, the functional groups of a molecule determine its interaction with specific targets. Therefore, we propose a hierarchical graph neural network framework (called HiGPPIM) for predicting PPIMs by integrating atom-level and functional group-level features of molecules. HiGPPIM constructs atom-level and functional group-level graphs based on chemical knowledge and learns graph representations using graph attention networks. Furthermore, a hypergraph attention network is designed in HiGPPIM to aggregate and transform two-level graph information. We evaluate the performance of HiGPPIM on eight PPI families and two prediction tasks, namely PPIM identification and potency prediction. Experimental results demonstrate that HiGPPIM achieves state-of-the-art performance on both tasks and that using functional group information to guide PPIM prediction is effective.
准确预测靶向蛋白质-蛋白质相互作用 (PPIM) 的小分子调节剂仍然是药物发现中的一个重大挑战。现有的基于机器学习的模型依赖于手动特征工程,这既繁琐又特定于任务。最近,基于图神经网络的深度学习模型在分子表示学习方面取得了显著进展。然而,许多基于图的方法忽略了基于领域知识指导的分子层次结构建模。在化学中,分子的官能团决定了它与特定靶标的相互作用。因此,我们提出了一种分层图神经网络框架(称为 HiGPPIM),通过整合分子的原子级和官能团级特征来预测 PPIM。HiGPPIM 基于化学知识构建原子级和官能团级图,并使用图注意网络学习图表示。此外,在 HiGPPIM 中设计了一个超图注意网络来聚合和转换两级图信息。我们在八个 PPI 家族和两个预测任务上评估了 HiGPPIM 的性能,即 PPIM 识别和效力预测。实验结果表明,HiGPPIM 在两个任务上都取得了最先进的性能,并且使用官能团信息来指导 PPIM 预测是有效的。