Ma Lei, Pu Chunyun, Shao Dangguo, Yi Sanli
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
Mol Divers. 2025 Aug 10. doi: 10.1007/s11030-025-11294-4.
Molecular property prediction is pivotal for drug discovery, offering significant potential to accelerate development and reduce costs. With the rapid development of artificial intelligence, molecular representation methods have become increasingly diversified. However, existing methods still have obvious deficiencies in the comprehensiveness of molecular representation and the effectiveness of feature fusion: single representation methods often can only capture part of a molecule's features, while multi-representation methods focus on limited combinations and use simple fusion strategies. To address these issues, we propose Mol-SGGI, a comprehensive multi-representation learning framework that integrates four molecular representations: sequences, 2D graph structures, 3D geometric structures, and images. For each representation, we design specialized modules for extracting features and introduce appropriate attention mechanisms in each module to effectively capture the structural and chemical information of the molecule. Additionally, we propose an attention-guided adaptive weighted fusion module, which achieves multimodal feature alignment through contrastive learning and dynamically adjusts fusion weights. Experimental results on eight molecular property prediction tasks show that our model significantly outperforms the majority of existing methods.
分子性质预测对于药物发现至关重要,具有加速研发进程和降低成本的巨大潜力。随着人工智能的快速发展,分子表示方法日益多样化。然而,现有方法在分子表示的全面性和特征融合的有效性方面仍存在明显不足:单一表示方法往往只能捕捉分子的部分特征,而多表示方法则侧重于有限的组合并采用简单的融合策略。为了解决这些问题,我们提出了Mol-SGGI,这是一个综合的多表示学习框架,它整合了四种分子表示:序列、二维图结构、三维几何结构和图像。对于每种表示,我们设计了专门的特征提取模块,并在每个模块中引入适当的注意力机制,以有效捕捉分子的结构和化学信息。此外,我们提出了一种注意力引导的自适应加权融合模块,它通过对比学习实现多模态特征对齐,并动态调整融合权重。在八项分子性质预测任务上的实验结果表明,我们的模型显著优于大多数现有方法。