Saha Tushar K, Ehrich Jannik, Gavrilov Momčilo, Still Susanne, Sivak David A, Bechhoefer John
Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada.
Department of Physics and Astronomy, University of Hawaii at Mānoa, Honolulu, Hawaii 96822, USA.
Phys Rev Lett. 2023 Aug 4;131(5):057101. doi: 10.1103/PhysRevLett.131.057101.
Information engines can convert thermal fluctuations of a bath at temperature T into work at rates of order k_{B}T per relaxation time of the system. We show experimentally that such engines, when in contact with a bath that is out of equilibrium, can extract much more work. We place a heavy, micron-scale bead in a harmonic potential that ratchets up to capture favorable fluctuations. Adding a fluctuating electric field increases work extraction up to ten times, limited only by the strength of the applied field. Our results connect Maxwell's demon with energy harvesting and demonstrate that information engines in nonequilibrium baths can greatly outperform conventional engines.
信息引擎能够在系统的每个弛豫时间内,以 (k_{B}T) 的量级将温度为 (T) 的热库中的热涨落转化为功。我们通过实验表明,当此类引擎与非平衡热库接触时,能够提取更多的功。我们将一个微米级的重珠子置于一个谐波势阱中,该势阱会向上棘轮运动以捕获有利的涨落。施加一个波动电场可使功的提取增加至十倍,唯一的限制是所施加电场的强度。我们的结果将麦克斯韦妖与能量收集联系起来,并证明处于非平衡热库中的信息引擎性能可大大超越传统引擎。