Suppr超能文献

Trap-Assisted Auger-Meitner Recombination from First Principles.

作者信息

Zhao Fangzhou, Turiansky Mark E, Alkauskas Audrius, Van de Walle Chris G

机构信息

Materials Department, University of California, Santa Barbara, California 93106-5050, USA.

Center for Physical Sciences and Technology (FTMC), Vilnius LT-10257, Lithuania.

出版信息

Phys Rev Lett. 2023 Aug 4;131(5):056402. doi: 10.1103/PhysRevLett.131.056402.

Abstract

Trap-assisted nonradiative recombination is known to limit the efficiency of optoelectronic devices, but the conventional multiphonon emission (MPE) process fails to explain the observed loss in wide-band-gap materials. Here, we highlight the role of trap-assisted Auger-Meitner (TAAM) recombination and present a first-principles methodology to determine TAAM rates due to defects or impurities in semiconductors or insulators. We assess the impact on efficiency of light emitters in a recombination cycle that may include both TAAM and carrier capture via MPE. We apply the formalism to the technologically relevant case study of a calcium impurity in InGaN, where a Shockley-Read-Hall recombination cycle involving MPE alone cannot explain the experimentally observed nonradiative loss. We find that, for band gaps larger than 2.5 eV, the inclusion of TAAM results in recombination rates that are orders of magnitude larger than recombination rates based on MPE alone, demonstrating that TAAM can be a dominant nonradiative process in wide-band-gap materials. Our computational formalism is general and can be applied to the calculation of TAAM rates in any semiconducting or insulating material.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验