Bushick Kyle, Kioupakis Emmanouil
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
Phys Rev Lett. 2023 Aug 18;131(7):076902. doi: 10.1103/PhysRevLett.131.076902.
We present a consistent first-principles methodology to study both direct and phonon-assisted Auger-Meitner recombination (AMR) in indirect-gap semiconductors that we apply to investigate the microscopic origin of AMR processes in silicon. Our results are in excellent agreement with experimental measurements and show that phonon-assisted contributions dominate the recombination rate in both n-type and p-type silicon, demonstrating the critical role of phonons in enabling AMR. We also decompose the overall rates into contributions from specific phonons and electronic valleys to further elucidate the microscopic origins of AMR. Our results highlight potential pathways to modify the AMR rate in silicon via strain engineering.
我们提出了一种连贯的第一性原理方法,用于研究间接带隙半导体中的直接和声子辅助俄歇-迈特纳复合(AMR),并将其应用于研究硅中AMR过程的微观起源。我们的结果与实验测量结果高度吻合,表明声子辅助贡献在n型和p型硅的复合率中均占主导地位,证明了声子在实现AMR中的关键作用。我们还将总速率分解为特定声子和电子谷的贡献,以进一步阐明AMR的微观起源。我们的结果突出了通过应变工程改变硅中AMR速率的潜在途径。