Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA.
J Chromatogr A. 2023 Sep 13;1706:464242. doi: 10.1016/j.chroma.2023.464242. Epub 2023 Aug 1.
We employed digital light processing-stereolithography 3D printing to create microfluidic devices with different designs for microchip electrophoresis (µCE). Short or long straight channel, and two- or four-turn serpentine channel microfluidic devices with separation channel lengths of 1.3, 3.1, 3.0, and 4.7 cm, respectively, all with a cross injector design, were fabricated. We measured current as a function of time and voltage to determine a separation time window and conditions for the onset of Joule heating in these designs. Separations in these devices were evaluated by performing µCE and measuring theoretical plate counts for electric field strengths near and above the onset of Joule heating, with fluorescently labeled glycine and phenylalanine as model analytes. We further demonstrated µCE of peptides and proteins related to preterm birth risk, showing increased peak capacity and resolution compared to previous results with 3D printed microdevices. These results mark an important step forward in the use of 3D printed microfluidic devices for rapid bioanalysis by µCE.
我们采用数字光处理-立体光刻 3D 打印技术,为微芯片电泳(µCE)创建了具有不同设计的微流控装置。分别制造了短或长直通道以及具有分离通道长度为 1.3、3.1、3.0 和 4.7 cm 的双或四匝蛇形通道微流控装置,均采用十字注射器设计。我们测量了电流随时间和电压的变化,以确定这些设计中的分离时间窗口和焦耳加热起始条件。通过进行µCE 并测量接近和超过焦耳加热起始时的电场强度的理论板数,用荧光标记的甘氨酸和苯丙氨酸作为模型分析物,对这些装置中的分离进行了评估。我们进一步展示了与早产风险相关的肽和蛋白质的 µCE,与以前使用 3D 打印微器件的结果相比,显示出更高的峰容量和分辨率。这些结果标志着 3D 打印微流控装置在通过 µCE 进行快速生物分析中的应用向前迈出了重要的一步。