Suppr超能文献

用于高度微型化和集成微流控的空间和光学定制 3D 打印。

Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics.

机构信息

Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602, USA.

Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, 84602, USA.

出版信息

Nat Commun. 2021 Sep 17;12(1):5509. doi: 10.1038/s41467-021-25788-w.

Abstract

Traditional 3D printing based on Digital Light Processing Stereolithography (DLP-SL) is unnecessarily limiting as applied to microfluidic device fabrication, especially for high-resolution features. This limitation is due primarily to inherent tradeoffs between layer thickness, exposure time, material strength, and optical penetration that can be impossible to satisfy for microfluidic features. We introduce a generalized 3D printing process that significantly expands the accessible spatially distributed optical dose parameter space to enable the fabrication of much higher resolution 3D components without increasing the resolution of the 3D printer. Here we demonstrate component miniaturization in conjunction with a high degree of integration, including 15 μm × 15 μm valves and a 2.2 mm × 1.1 mm 10-stage 2-fold serial diluter. These results illustrate our approach's promise to enable highly functional and compact microfluidic devices for a wide variety of biomolecular applications.

摘要

传统的基于数字光处理立体光刻(DLP-SL)的 3D 打印在应用于微流控器件制造时受到不必要的限制,特别是对于高分辨率特征。这种限制主要是由于层厚度、曝光时间、材料强度和光学穿透之间的固有权衡,对于微流控特征来说,这些权衡可能无法满足。我们引入了一种通用的 3D 打印工艺,该工艺显著扩展了可访问的空间分布光剂量参数空间,从而能够制造更高分辨率的 3D 组件,而无需提高 3D 打印机的分辨率。在这里,我们展示了组件的小型化以及高度集成,包括 15μm×15μm 的阀和 2.2mm×1.1mm 的 10 级 2 倍串联稀释器。这些结果表明,我们的方法有望为各种生物分子应用实现功能强大且紧凑的微流控器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10fe/8448845/6911d5e7993c/41467_2021_25788_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验