Bisson Arnaud, Lemrini Yassine, Romiti Giulio Francesco, Proietti Marco, Angoulvant Denis, Bentounes Sidahmed, El-Bouri Wahbi, Lip Gregory Y H, Fauchier Laurent
Service de Cardiologie, Centre Hospitalier Régional Universitaire et Faculté de Médecine de Tours, Tours, France; EA4245, Transplantation Immunité Inflammation, Université de Tours, Tours, France; Service de Cardiologie, Centre Hospitalier Régional Universitaire d'Orléans, Orléans, France; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom.
Service de Cardiologie, Centre Hospitalier Régional Universitaire et Faculté de Médecine de Tours, Tours, France.
Am Heart J. 2023 Nov;265:191-202. doi: 10.1016/j.ahj.2023.08.006. Epub 2023 Aug 16.
Atrial fibrillation is associated with important mortality but the usual clinical risk factor based scores only modestly predict mortality. This study aimed to develop machine learning models for the prediction of death occurrence within the year following atrial fibrillation diagnosis and compare predictive ability against usual clinical risk scores.
We used a nationwide cohort of 2,435,541 newly diagnosed atrial fibrillation patients seen in French hospitals from 2011 to 2019. Three machine learning models were trained to predict mortality within the first year using a training set (70% of the cohort). The best model was selected to be evaluated and compared with previously published scores on the validation set (30% of the cohort). Discrimination of the best model was evaluated using the C index. Within the first year following atrial fibrillation diagnosis, 342,005 patients (14.4%) died after a period of 83 (SD 98) days (median 37 [10-129]). The best machine learning model selected was a deep neural network with a C index of 0.785 (95% CI, 0.781-0.789) on the validation set. Compared to clinical risk scores, the selected model was superior to the CHADS-VASc and HAS-BLED risk scores and superior to dedicated scores such as Charlson Comorbidity Index and Hospital Frailty Risk Score to predict death within the year following atrial fibrillation diagnosis (C indexes: 0.597; 0.562; 0.643; 0.626 respectively. P < .0001).
Machine learning algorithms predict early death after atrial fibrillation diagnosis and may help clinicians to better risk stratify atrial fibrillation patients at high risk of mortality.
心房颤动与严重的死亡率相关,但基于常见临床风险因素的评分仅能适度预测死亡率。本研究旨在开发机器学习模型,以预测心房颤动诊断后一年内的死亡发生情况,并将预测能力与常见临床风险评分进行比较。
我们使用了一个全国性队列,该队列包含2011年至2019年在法国医院新诊断的2,435,541例心房颤动患者。使用训练集(队列的70%)训练了三种机器学习模型,以预测第一年的死亡率。选择最佳模型在验证集(队列的30%)上进行评估,并与先前发表的评分进行比较。使用C指数评估最佳模型的辨别力。在心房颤动诊断后的第一年内,342,005例患者(14.4%)在83天(标准差98天)(中位数37天[10 - 129天])后死亡。在验证集上选择的最佳机器学习模型是一个深度神经网络,C指数为0.785(95%可信区间,0.781 - 0.789)。与临床风险评分相比,所选模型在预测心房颤动诊断后一年内的死亡方面优于CHADS - VASc和HAS - BLED风险评分,也优于诸如Charlson合并症指数和医院虚弱风险评分等专用评分(C指数分别为:0.597;0.562;0.643;0.626。P < 0.0001)。
机器学习算法可预测心房颤动诊断后的早期死亡,并可能有助于临床医生更好地对有高死亡风险的心房颤动患者进行风险分层。