Department of Electrical Engineering (S.T.), Stanford University, CA.
University College London, Centre for Advanced Research Computing, United Kingdom (O.R.).
Circ Arrhythm Electrophysiol. 2022 Aug;15(8):e010850. doi: 10.1161/CIRCEP.122.010850. Epub 2022 Jul 22.
Machine learning is a promising approach to personalize atrial fibrillation management strategies for patients after catheter ablation. Prior atrial fibrillation ablation outcome prediction studies applied classical machine learning methods to hand-crafted clinical scores, and none have leveraged intracardiac electrograms or 12-lead surface electrocardiograms for outcome prediction. We hypothesized that (1) machine learning models trained on electrograms or electrocardiogram (ECG) signals can perform better at predicting patient outcomes after atrial fibrillation ablation than existing clinical scores and (2) multimodal fusion of electrogram, ECG, and clinical features can further improve the prediction of patient outcomes.
Consecutive patients who underwent catheter ablation between 2015 and 2017 with panoramic left atrial electrogram before ablation and clinical follow-up for at least 1 year following ablation were included. Convolutional neural network and a novel multimodal fusion framework were developed for predicting 1-year atrial fibrillation recurrence after catheter ablation from electrogram, ECG signals, and clinical features. The models were trained and validated using 10-fold cross-validation on patient-level splits.
One hundred fifty-six patients (64.5±10.5 years, 74% male, 42% paroxysmal) were analyzed. Using electrogram signals alone, the convolutional neural network achieved an area under the receiver operating characteristics curve (AUROC) of 0.731, outperforming the existing APPLE scores (AUROC=0.644) and CHA2DS2-VASc scores (AUROC=0.650). Similarly using 12-lead ECG alone, the convolutional neural network achieved an AUROC of 0.767. Combining electrogram, ECG, and clinical features, the fusion model achieved an AUROC of 0.859, outperforming single and dual modality models.
Deep neural networks trained on electrogram or ECG signals improved the prediction of catheter ablation outcome compared with existing clinical scores, and fusion of electrogram, ECG, and clinical features further improved the prediction. This suggests the promise of using machine learning to help treatment planning for patients after catheter ablation.
机器学习是一种很有前途的方法,可以为接受导管消融治疗后的心房颤动患者制定个体化的管理策略。之前的心房颤动消融结果预测研究应用了经典的机器学习方法来构建手工制作的临床评分,并且都没有利用心内电图或 12 导联体表心电图来进行结果预测。我们假设:(1)在心房颤动消融后,基于心电图信号训练的机器学习模型可以比现有的临床评分更好地预测患者的预后;(2)心内电图、心电图和临床特征的多模态融合可以进一步提高对患者预后的预测。
连续纳入 2015 年至 2017 年间接受导管消融治疗的患者,消融前进行左心房全景电图,消融后至少 1 年进行临床随访。开发了卷积神经网络和一种新的多模态融合框架,用于从心电图、心内电图信号和临床特征预测导管消融后 1 年心房颤动的复发。使用 10 倍交叉验证在患者层面上对模型进行训练和验证。
共分析了 156 例患者(64.5±10.5 岁,74%为男性,42%为阵发性)。仅使用心电图信号,卷积神经网络的受试者工作特征曲线下面积(AUROC)为 0.731,优于现有的 APPLE 评分(AUROC=0.644)和 CHA2DS2-VASc 评分(AUROC=0.650)。同样仅使用 12 导联心电图,卷积神经网络的 AUROC 为 0.767。结合心电图、心内电图和临床特征,融合模型的 AUROC 为 0.859,优于单一和双模态模型。
基于心电图或心内电图信号训练的深度神经网络改善了导管消融结果的预测,与现有的临床评分相比,心内电图、心电图和临床特征的融合进一步提高了预测能力。这表明使用机器学习来帮助导管消融后患者的治疗计划具有一定的前景。