Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK.
Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
Cardiovasc Diabetol. 2024 Nov 26;23(1):426. doi: 10.1186/s12933-024-02521-7.
The burden of atrial fibrillation (AF) in the intensive care unit (ICU) remains heavy. Glycaemic control is important in the AF management. Glycaemic variability (GV), an emerging marker of glycaemic control, is associated with unfavourable prognosis, and abnormal GV is prevalent in ICUs. However, the impact of GV on the prognosis of AF patients in the ICU remains uncertain. This study aimed to evaluate the relationship between GV and all-cause mortality after ICU admission at short-, medium-, and long-term intervals in AF patients.
Data was obtained from the Medical Information Mart for Intensive Care IV 3.0 database, with admissions (2008-2019) as primary analysis cohort and admissions (2020-2022) as external validation cohort. Multivariate Cox proportional hazards models, and restricted cubic spline analyses were used to assess the associations between GV and mortality outcomes. Subsequently, GV and other clinical features were used to construct machine learning (ML) prediction models for 30-day all-cause mortality after ICU admission.
The primary analysis cohort included 8989 AF patients (age 76.5 [67.7-84.3] years; 57.8% male), while the external validation cohort included 837 AF patients (age 72.9 [65.3-80.2] years; 67.4% male). Multivariate Cox proportional hazards models revealed that higher GV quartiles were associated with higher risk of 30-day (Q3: HR 1.19, 95%CI 1.04-1.37; Q4: HR 1.33, 95%CI 1.16-1.52), 90-day (Q3: HR 1.25, 95%CI 1.11-1.40; Q4: HR 1.34, 95%CI 1.29-1.50), and 360-day (Q3: HR 1.21, 95%CI 1.09-1.33; Q4: HR 1.33, 95%CI 1.20-1.47) all-cause mortality, compared with lowest GV quartile. Moreover, our data suggests that GV needs to be contained within 20.0%. Among all ML models, light gradient boosting machine had the best performance (internal validation: AUC [0.780], G-mean [0.551], F1-score [0.533]; external validation: AUC [0.788], G-mean [0.578], F1-score [0.568]).
GV is a significant predictor of ICU short-term, mid-term, and long-term all-cause mortality in patients with AF (the potential risk stratification threshold is 20.0%). ML models incorporating GV demonstrated high efficiency in predicting short-term mortality and GV was ranked anterior in importance. These findings underscore the potential of GV as a valuable biomarker in guiding clinical decisions and improving patient outcomes in this high-risk population.
房颤(AF)在重症监护病房(ICU)的负担仍然很重。血糖控制在 AF 管理中很重要。血糖变异性(GV)是血糖控制的一个新兴标志物,与不良预后相关,在 ICU 中普遍存在。然而,GV 对 ICU 中 AF 患者预后的影响仍不确定。本研究旨在评估在 AF 患者 ICU 入住后短期、中期和长期间隔内,GV 与全因死亡率之间的关系。
数据来自医疗信息市场重症监护 IV 3.0 数据库,以入院(2008-2019 年)作为主要分析队列,以入院(2020-2022 年)作为外部验证队列。多变量 Cox 比例风险模型和限制性立方样条分析用于评估 GV 与死亡率结局之间的关系。随后,将 GV 和其他临床特征用于构建机器学习(ML)预测模型,以预测 ICU 入住后 30 天的全因死亡率。
主要分析队列包括 8989 例 AF 患者(年龄 76.5 [67.7-84.3] 岁;57.8%为男性),外部验证队列包括 837 例 AF 患者(年龄 72.9 [65.3-80.2] 岁;67.4%为男性)。多变量 Cox 比例风险模型显示,较高的 GV 四分位数与较高的 30 天(Q3:HR 1.19,95%CI 1.04-1.37;Q4:HR 1.33,95%CI 1.16-1.52)、90 天(Q3:HR 1.25,95%CI 1.11-1.40;Q4:HR 1.34,95%CI 1.29-1.50)和 360 天(Q3:HR 1.21,95%CI 1.09-1.33;Q4:HR 1.33,95%CI 1.20-1.47)全因死亡率相关,与最低 GV 四分位数相比。此外,我们的数据表明,GV 需要控制在 20.0%以内。在所有 ML 模型中,轻梯度提升机具有最佳性能(内部验证:AUC [0.780]、G-mean [0.551]、F1 分数 [0.533];外部验证:AUC [0.788]、G-mean [0.578]、F1 分数 [0.568])。
GV 是 AF 患者 ICU 短期、中期和长期全因死亡率的重要预测指标(潜在风险分层阈值为 20.0%)。纳入 GV 的 ML 模型在预测短期死亡率方面表现出高效性,GV 在重要性方面排名靠前。这些发现强调了 GV 作为指导临床决策和改善高危人群患者预后的有价值生物标志物的潜力。