Suppr超能文献

基于心音信号的正交非负矩阵分解和卷积神经网络的瓣膜性心脏病检测。

Detection of valvular heart diseases combining orthogonal non-negative matrix factorization and convolutional neural networks in PCG signals.

机构信息

Department of Telecommunication Engineering. University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares (Jaen), 23700, Spain.

Department of Telecommunication Engineering. University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares (Jaen), 23700, Spain.

出版信息

J Biomed Inform. 2023 Sep;145:104475. doi: 10.1016/j.jbi.2023.104475. Epub 2023 Aug 16.

Abstract

BACKGROUND AND OBJECTIVE

Valvular heart disease (VHD) is associated with elevated mortality rates. Although transthoracic echocardiography (TTE) is the gold standard detection tool, phonocardiography (PCG) could be an alternative as it is a cost-effective and noninvasive method for cardiac auscultation. Many researchers have dedicated their efforts to improving the decision-making process and developing robust and precise approaches to assist physicians in providing reliable diagnoses of VHD.

METHODS

This research proposes a novel approach for the detection of anomalous valvular heart sounds from PCG signals. The proposed approach combines orthogonal non-negative matrix factorization (ONMF) and convolutional neural network (CNN) architectures in a three-stage cascade. The aim of the proposal is to improve the learning process by identifying the optimal ONMF temporal or spectral patterns for accurate detection. In the first stage, the time-frequency representation of the input PCG signal is computed. Next, band-pass filtering is performed to locate the spectral range that is most relevant for the presence of such cardiac abnormalities. In the second stage, the temporal and spectral cardiac structures are extracted using the ONMF approach. These structures are utilized in the third stage and fed into the CNN architecture to detect abnormal heart sounds.

RESULTS

Several state-of-the-art CNN architectures, such as LeNet5, AlexNet, ResNet50, VGG16 and GoogLeNet, have been evaluated to determine the effectiveness of using ONMF temporal features for VHD detection. The results reveal that the integration of ONMF temporal features with a CNN classifier significantly improve VHD detection. Specifically, the proposed approach achieves an accuracy improvement of approximately 45% when ONMF spectral features are used and 35% when time-frequency features from the short-time Fourier transform (STFT) spectrogram are used. Additionally, feeding ONMF temporal features into low-complexity CNN architectures yields competitive results comparable to those obtained with complex architectures.

CONCLUSIONS

The temporal structure factorized by ONMF plays a critical role in distinguishing between normal heart sounds and abnormal heart sounds since the repeatability of normal heart cycles is disrupted by the presence of cardiac abnormalities. Consequently, the results highlight the importance of appropriate input data representation in the learning process of CNN models in the biomedical field of valvular heart sound detection.

摘要

背景与目的

瓣膜性心脏病(VHD)与死亡率升高有关。尽管经胸超声心动图(TTE)是金标准检测工具,但心音图(PCG)也可以作为替代方法,因为它是一种经济有效的心脏听诊非侵入性方法。许多研究人员致力于改进决策过程,并开发强大而精确的方法来帮助医生提供可靠的 VHD 诊断。

方法

本研究提出了一种从心音图信号中检测异常瓣膜心音的新方法。该方法在三阶段级联中结合了正交非负矩阵分解(ONMF)和卷积神经网络(CNN)架构。该提案的目的是通过识别用于准确检测的最佳 ONMF 时频模式来改进学习过程。在第一阶段,计算输入心音图信号的时频表示。接下来,进行带通滤波以找到与存在此类心脏异常最相关的光谱范围。在第二阶段,使用 ONMF 方法提取时频和光谱心脏结构。这些结构在第三阶段被使用并输入到 CNN 架构中以检测异常心音。

结果

评估了几种最先进的 CNN 架构,如 LeNet5、AlexNet、ResNet50、VGG16 和 GoogLeNet,以确定使用 ONMF 时频特征进行 VHD 检测的有效性。结果表明,将 ONMF 时频特征与 CNN 分类器集成可以显著提高 VHD 检测性能。具体而言,当使用 ONMF 光谱特征时,该方法的准确率提高了约 45%,当使用短时傅里叶变换(STFT)频谱的时频特征时,准确率提高了 35%。此外,将 ONMF 时频特征输入到低复杂度的 CNN 架构中,可获得与复杂架构相当的竞争结果。

结论

ONMF 分解的时频结构在区分正常心音和异常心音方面起着关键作用,因为存在心脏异常会破坏正常心周期的重复性。因此,结果强调了在生物医学领域的瓣膜心音检测中,适当的输入数据表示在 CNN 模型的学习过程中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验