Jamil Sonain, Roy Arunabha M
Department of Electronics Engineering, Sejong University, Seoul, 05006, South Korea.
Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Comput Biol Med. 2023 May;158:106734. doi: 10.1016/j.compbiomed.2023.106734. Epub 2023 Mar 2.
Valvular heart diseases (VHDs) are one of the dominant causes of cardiovascular abnormalities that have been associated with high mortality rates globally. Rapid and accurate diagnosis of the early stage of VHD based on cardiac phonocardiogram (PCG) signal is critical that allows for optimum medication and reduction of mortality rate.
To this end, the current study proposes novel deep learning (DL)-based high-performance VHD detection frameworks that are relatively simpler in terms of network structures, yet effective for accurately detecting multiple VHDs. We present three different frameworks considering both 1D and 2D PCG raw signals. For 1D PCG, Mel frequency cepstral coefficients (MFCC) and linear prediction cepstral coefficients (LPCC) features, whereas, for 2D PCG, various deep convolutional neural networks (D-CNNs) features are extracted. Additionally, nature/bio-inspired algorithms (NIA/BIA) including particle swarm optimization (PSO) and genetic algorithm (GA) have been utilized for automatic and efficient feature selection directly from the raw PCG signal. To further improve the performance of the classifier, vision transformer (ViT) has been implemented levering the self-attention mechanism on the time frequency representation (TFR) of 2D PCG signal. Our extensive study presents a comparative performance analysis and the scope of enhancement for the combination of different descriptors, classifiers, and feature selection algorithms.
Among all classifiers, ViT provides the best performance by achieving mean average accuracy A of 99.90 % and F1-score of 99.95 % outperforming current state-of-the-art VHD classification models.
The present research provides a robust and efficient DL-based end-to-end PCG signal classification framework for designing a automated high-performance VHD diagnosis system.
心脏瓣膜病(VHDs)是心血管异常的主要原因之一,在全球范围内与高死亡率相关。基于心音图(PCG)信号对VHD早期进行快速准确的诊断至关重要,这有助于实现最佳药物治疗并降低死亡率。
为此,本研究提出了基于深度学习(DL)的新型高性能VHD检测框架,这些框架在网络结构方面相对简单,但对于准确检测多种VHD有效。我们提出了三种不同的框架,同时考虑了一维和二维PCG原始信号。对于一维PCG,提取梅尔频率倒谱系数(MFCC)和线性预测倒谱系数(LPCC)特征,而对于二维PCG,则提取各种深度卷积神经网络(D-CNNs)特征。此外,包括粒子群优化(PSO)和遗传算法(GA)在内的自然/生物启发算法(NIA/BIA)已被用于直接从原始PCG信号中进行自动高效的特征选择。为了进一步提高分类器的性能,已在二维PCG信号的时频表示(TFR)上利用自注意力机制实现了视觉Transformer(ViT)。我们广泛的研究给出了不同描述符、分类器和特征选择算法组合的比较性能分析及改进范围。
在所有分类器中,ViT表现最佳,平均准确率A达到99.90%,F1分数达到99.95%,优于当前最先进的VHD分类模型。
本研究为设计自动化高性能VHD诊断系统提供了一个强大且高效的基于深度学习的端到端PCG信号分类框架。