Suppr超能文献

铁基活性炭系统强化微污染水源氮去除效能研究:活性、多样性、核心属互作及共存关系解析。

Enhanced nitrogen removal of micropolluted source waterbodies using an iron activated carbon system with siliceous materials: Insights into metabolic activity, biodiversity, interactions of core genus and co-existence.

机构信息

Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.

Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.

出版信息

Bioresour Technol. 2023 Nov;387:129656. doi: 10.1016/j.biortech.2023.129656. Epub 2023 Aug 16.

Abstract

Aerobic denitrification technology can effectively abate the nitrogen pollution of water source reservoirs. In this study, 40% siliceous material was used as the carrier to replace the activated carbon in Fe/C material to enhance denitrification and purify water. The removal efficiency of new material for target pollutants were nitrate nitrogen (95.68%), total phosphorus (68.23%) and chemical oxygen demand (46.20%). Aerobic denitrification of water samples and anaerobic denitrification of sediments in three systems jointly assisted nitrogen removal. In a reactor with new material, diversity and richness of denitrifying bacterial communities were enhanced, and the symbiotic structure of aerobic denitrifying bacteria was more complex (Bacillus and Mycobacteria as the dominant bacteria); the microbial distribution better matched the Zif and Mandelbrot models. This system significantly increased the abundance of key enzymes in water samples. The new material effectively removed pollutants and represents a promising and innovative in-situ remediation method for reservoirs.

摘要

好的,我已经了解任务,请你提供需要翻译的文本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验