Suppr超能文献

基于多凸组合最大相关熵准则的视觉同步定位与地图构建的非线性后端优化方法

Nonlinear back-end optimization method for VSLAM with multi-convex combined maximum correntropy criterion.

作者信息

Cheng Lan, Wang Ting, Xu Xinying, Yan Gaowei, Ren Mifeng, Zhang Zhe

机构信息

College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.

出版信息

ISA Trans. 2023 Nov;142:731-746. doi: 10.1016/j.isatra.2023.08.006. Epub 2023 Aug 8.

Abstract

Back-end optimization plays a key role in eliminating the accumulated error in Visual Simultaneous Localization And Mapping (VSLAM). Existing back-end optimization methods are usually premised on the Gaussian noise assumption which does not always hold true due to the non-convex nature of the image and the fact that non-Gaussian noises are often encountered in real scenes. In view of this, we propose a back-end optimization method based on Multi-Convex combined Maximum Correntropy Criterion (MCMCC). A MCMCC-based cost function is first tailored for nonlinear back-end optimization in the context of VSLAM and the optimization problem is solved through Levenberg-Marquardt algorithm iteratively. Then, the proposed method is applied to ORB-SLAM3 to test its performance on public indoor and outdoor datasets. The real time performance is also validated using a RaceBot platform in real indoor and outdoor environments. In addition, the reprojection error is statistically analyzed to demonstrate the non-Gaussian characteristics in the back-end optimization process. Finally, the suggestion parameters are also provided through experiments for further study.

摘要

后端优化在消除视觉同步定位与地图构建(VSLAM)中的累积误差方面起着关键作用。现有的后端优化方法通常基于高斯噪声假设,但由于图像的非凸性质以及在实际场景中经常遇到非高斯噪声,该假设并不总是成立。鉴于此,我们提出了一种基于多凸组合最大相关熵准则(MCMCC)的后端优化方法。首先,针对VSLAM中的非线性后端优化定制了基于MCMCC的代价函数,并通过Levenberg-Marquardt算法迭代求解优化问题。然后,将所提出的方法应用于ORB-SLAM3,以在公开的室内和室外数据集上测试其性能。还使用RaceBot平台在实际室内和室外环境中验证了实时性能。此外,对重投影误差进行统计分析,以证明后端优化过程中的非高斯特性。最后,通过实验提供了建议参数以供进一步研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验