Suppr超能文献

DA-IRRK:用于视觉同步定位与地图构建后端优化的数据自适应迭代重加权鲁棒核方法

DA-IRRK: Data-Adaptive Iteratively Reweighted Robust Kernel-Based Approach for Back-End Optimization in Visual SLAM.

作者信息

Hu Zhimin, Cheng Lan, Wei Jiangxia, Xu Xinying, Zhang Zhe, Yan Gaowei

机构信息

Electrical and Power Engineering, Yingxi Campus, Taiyuan University of Technology, No. 79 Yingze West Street, Wanbailin District, Taiyuan 030024, China.

出版信息

Sensors (Basel). 2025 Apr 17;25(8):2529. doi: 10.3390/s25082529.

Abstract

Back-end optimization is a key process to eliminate the cumulative error in Visual Simultaneous Localization and Mapping (VSLAM). Existing VSLAM frameworks often use kernel function-based back-end optimization methods. However, these methods typically rely on fixed kernel parameters based on the chi-square test, assuming Gaussian-distributed reprojection errors. In practice, though, reprojection errors are not always Gaussian, which can reduce robustness and accuracy. Therefore, we propose a data-adaptive iteratively reweighted robust kernel (DA-IRRK) approach, which combines median absolute deviation (MAD) with iteratively reweighted strategies. The robustness parameters are adaptively adjusted according to the MAD of reprojection errors, and the Huber kernel function is used to demonstrate the implementation of the back-end optimization process. The method is compared with other robust function-based approaches via the EuRoC dataset and the KITTI dataset, showing adaptability across different VSLAM frameworks and demonstrating significant improvements in trajectory accuracy on the vast majority of dataset sequences. The statistical analysis of the results from the perspective of reprojection error indicates DA-IRRK can tackle non-Gaussian noises better than the compared methods.

摘要

后端优化是消除视觉同步定位与地图构建(VSLAM)中累积误差的关键过程。现有的VSLAM框架通常使用基于核函数的后端优化方法。然而,这些方法通常基于卡方检验依赖固定的核参数,假设重投影误差呈高斯分布。但在实际中,重投影误差并不总是高斯分布,这会降低鲁棒性和准确性。因此,我们提出一种数据自适应迭代加权鲁棒核(DA - IRRK)方法,该方法将中位数绝对偏差(MAD)与迭代加权策略相结合。根据重投影误差的MAD自适应调整鲁棒性参数,并使用Huber核函数展示后端优化过程的实现。通过EuRoC数据集和KITTI数据集将该方法与其他基于鲁棒函数的方法进行比较,结果表明该方法在不同的VSLAM框架中具有适应性,并且在绝大多数数据集序列上轨迹精度有显著提高。从重投影误差角度对结果进行统计分析表明,DA - IRRK比所比较的方法能更好地处理非高斯噪声。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c2/12031008/f0f81602ecb3/sensors-25-02529-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验