McGuinness Kenneth N, Fehon Nolan, Feehan Ryan, Miller Michelle, Mutter Andrew C, Rybak Laryssa A, Nam Justin, AbuSalim Jenna E, Atkinson Joshua T, Heidari Hirbod, Losada Natalie, Kim J Dongun, Koder Ronald L, Lu Yi, Silberg Jonathan J, Slusky Joanna S G, Falkowski Paul G, Nanda Vikas
Department of Natural Sciences, Caldwell University, Caldwell, New Jersey, USA.
Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA.
Proteins. 2024 Jan;92(1):52-59. doi: 10.1002/prot.26563. Epub 2023 Aug 19.
The core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreductases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors as tuned by the protein environment. Understanding how protein structure affects oxidation-reduction energetics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a manually curated database of experimentally determined redox potentials. With over 500 measurements, we can begin to identify how proteins modulate oxidation-reduction energetics across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron transfer energetics over deep time. ProtReDox is designed to include user-contributed submissions with the intention of making it a valuable resource for researchers in this field.
生命的核心代谢反应通过一类氧化还原蛋白酶(氧化还原酶)驱动电子。电子流动的能量学由蛋白质环境调节的有机和无机辅因子的氧化还原电位决定。了解蛋白质结构如何影响氧化还原能量学对于研究新陈代谢、创建生物电子系统以及追溯地球上生物能量利用的历史至关重要。我们构建了ProtReDox(https://protein-redox-potential.web.app),这是一个经过人工整理的实验测定氧化还原电位数据库。通过500多次测量,我们可以开始确定蛋白质如何在整个生命树中调节氧化还原能量学。通过将氧化还原电位映射到氧化还原酶折叠进化网络上,我们可以推断出长期以来电子转移能量学的进化。ProtReDox旨在纳入用户提交的内容,使其成为该领域研究人员的宝贵资源。