羟胺氧化还原酶中的氧化还原平衡。多电子氧化过程中电子重新分布的静电控制。

Redox equilibria in hydroxylamine oxidoreductase. Electrostatic control of electron redistribution in multielectron oxidative processes.

作者信息

Kurnikov Igor V, Ratner Mark A, Pacheco A Andrew

机构信息

Chemistry Department, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

出版信息

Biochemistry. 2005 Feb 15;44(6):1856-63. doi: 10.1021/bi048060v.

Abstract

We report results of continuum electrostatics calculations of the cofactor redox potentials, and of the titratable group pK(a) values, in hydroxylamine oxidoreductase (HAO). A picture of a sophisticated multicomponent control of electron flow in the protein emerged from the studies. First, we found that neighboring heme cofactors strongly interact electrostatically, with energies of 50-100 mV. Thus, cofactor redox potentials depend on the oxidation state of other cofactors, and cofactor redox potentials in the active (partially oxidized) enzyme differ substantially from the values obtained in electrochemical redox titration experiments. We found that, together, solvent-exposed heme 1 (having a large negative redox potential) and heme 2 (having a large positive redox potential) form a lock for electrons generated during the oxidation reaction The attachment of HAO's physiological electron transfer partner cytochrome c(554) results in a positive shift in the redox potential of heme 1, and "opens the electron gate". Electrons generated as a result of hydroxylamine oxidation travel to heme 3 and heme 8, which have redox potentials close to 0 mV versus NHE (this result is in partial disagreement with an existing experimental redox potential assignment). The closeness of hemes 3 and 8 from different enzyme subunits allows redistribution of the four electrons generated as a result of hydroxylamine oxidation, among the three enzyme subunits. For the multielectron oxidation process to be maximally efficient, the redox potentials of the electron-accepting cofactors should be roughly equal, and electrostatic interactions between extra electrons on these cofactors should be minimal. The redox potential assignments presented in the paper satisfy this general rule.

摘要

我们报告了对羟胺氧化还原酶(HAO)中辅因子氧化还原电位以及可滴定基团pK(a)值进行连续介质静电计算的结果。这些研究揭示了该蛋白质中电子流动的复杂多组分控制机制。首先,我们发现相邻的血红素辅因子之间存在强烈的静电相互作用,能量为50 - 100 mV。因此,辅因子的氧化还原电位取决于其他辅因子的氧化态,并且活性(部分氧化)酶中的辅因子氧化还原电位与电化学氧化还原滴定实验中获得的值有很大差异。我们发现,溶剂暴露的血红素1(具有很大的负氧化还原电位)和血红素2(具有很大的正氧化还原电位)共同形成了一个对氧化反应过程中产生的电子的“锁定”。HAO的生理电子传递伙伴细胞色素c(554)的附着导致血红素1的氧化还原电位正向移动,并“打开电子门”。羟胺氧化产生的电子流向血红素3和血红素8,相对于标准氢电极(NHE),它们的氧化还原电位接近0 mV(这一结果与现有的实验氧化还原电位分配存在部分分歧)。来自不同酶亚基的血红素3和8距离较近,使得羟胺氧化产生的四个电子能够在三个酶亚基之间重新分布。为了使多电子氧化过程效率最大化,电子接受辅因子的氧化还原电位应大致相等,并且这些辅因子上多余电子之间的静电相互作用应最小。本文提出的氧化还原电位分配符合这一一般规则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索