Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea.
School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea.
Biosens Bioelectron. 2023 Oct 15;238:115598. doi: 10.1016/j.bios.2023.115598. Epub 2023 Aug 14.
The use of phages-a natural predator of bacteria-has emerged as a therapeutic strategy for treating multidrug-resistant bacterial infections; thus, the isolation and detection of phages from the environment is crucial for advancing phage therapy. Herein, for the first time, we propose a nanoplasmonic-based biodetection platform for phages that utilizes bacterial outer membranes (OMs) as a biorecognition element. Conventional biosensors based on phage-bacteria interactions encounter multiple challenges due to the bacteriolytic phages and potentially toxic bacteria, resulting in instability and risk in the measurement. Therefore, instead of whole living bacteria, we employ a safe biochemical OMs fraction presenting phage-specific receptors, allowing the robust and reliable phage detection. In addition, the biochip is constructed on bimetallic nanoplasmonic islands through solid-state dewetting for synergy between Au and Ag, whereby sensitive detection of phage-OMs interactions is achieved by monitoring the absorption peak shift. For high detection performance, the nanoplasmonic chip is optimized by systematically investigating the morphological features, e.g., size and packing density of the nanoislands. Using our optimized device, phages are detected with high sensitivity (≥∼10 plaques), specificity (little cross-reactivity), and affinity (stronger binding to the host OMs than anti-bacterial antibodies), further exhibiting the cell-killing activities.
噬菌体——细菌的天然捕食者——已被用作治疗多重耐药细菌感染的治疗策略;因此,从环境中分离和检测噬菌体对于推进噬菌体治疗至关重要。在此,我们首次提出了一种基于纳米等离子体的噬菌体生物检测平台,该平台利用细菌外膜 (OM) 作为生物识别元件。由于溶菌噬菌体和潜在毒性细菌的存在,基于噬菌体-细菌相互作用的传统生物传感器在测量过程中会遇到多种挑战,从而导致不稳定和风险。因此,我们没有使用完整的活菌,而是采用了安全的生化 OM 部分,其中含有噬菌体特异性受体,从而可以实现可靠且稳定的噬菌体检测。此外,生物芯片通过固态去湿在双金属纳米等离子体岛上构建,从而实现了 Au 和 Ag 之间的协同作用,通过监测吸收峰的移动实现了对噬菌体-OM 相互作用的灵敏检测。为了实现高检测性能,通过系统研究纳米岛的形态特征(例如尺寸和堆积密度)对纳米等离子体芯片进行了优化。使用我们优化后的设备,以高灵敏度(≥∼10 噬菌斑)、特异性(交叉反应性小)和亲和力(与宿主 OM 的结合比抗细菌抗体更强)检测到噬菌体,进一步显示出细胞杀伤活性。