Barrozo Enrico R, Seferovic Maxim D, Hamilton Mark P, Moorshead David N, Jochum Michael D, Do Trang, O'Neil Derek S, Suter Melissa A, Aagaard Kjersti M
Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX.
Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX; Hematology & Medical Oncology, Stanford School of Medicine, Stanford University, Palo Alto, CA.
Am J Obstet Gynecol. 2024 Feb;230(2):251.e1-251.e17. doi: 10.1016/j.ajog.2023.08.012. Epub 2023 Aug 19.
Zika virus congenital infection evades double-stranded RNA detection and may persist in the placenta for the duration of pregnancy without accompanying overt histopathologic inflammation. Understanding how viruses can persist and replicate in the placenta without causing overt cellular or tissue damage is fundamental to deciphering mechanisms of maternal-fetal vertical transmission.
Placenta-specific microRNAs are believed to be a tenet of viral resistance at the maternal-fetal interface. We aimed to test the hypothesis that the Zika virus functionally disrupts placental microRNAs, enabling viral persistence and fetal pathogenesis.
To test this hypothesis, we used orthogonal approaches in human and murine experimental models. In primary human trophoblast cultures (n=5 donor placentae), we performed Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation to identify any significant alterations in the functional loading of microRNAs and their targets onto the RNA-induced silencing complex. Trophoblasts from same-donors were split and infected with a contemporary first-passage Zika virus strain HN16 (multiplicity of infection=1 plaque forming unit per cell) or mock infected. To functionally cross-validate microRNA-messenger RNA interactions, we compared our Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation results with an independent analysis of published bulk RNA-sequencing data from human placental disk specimens (n=3 subjects; Zika virus positive in first, second, or third trimester, CD45 cells sorted by flow cytometry) and compared it with uninfected controls (n=2 subjects). To investigate the importance of these microRNA and RNA interference networks in Zika virus pathogenesis, we used a gnotobiotic mouse model uniquely susceptible to the Zika virus. We evaluated if small-molecule enhancement of microRNA and RNA interference pathways with enoxacin influenced Zika virus pathogenesis (n=20 dams total yielding 187 fetal specimens). Lastly, placentae (n=14 total) from this mouse model were analyzed with Visium spatial transcriptomics (9743 spatial transcriptomes) to identify potential Zika virus-associated alterations in immune microenvironments.
We found that Zika virus infection of primary human trophoblast cells led to an unexpected disruption of placental microRNA regulation networks. When compared with uninfected controls, Zika virus-infected placentae had significantly altered SLC12A8, SDK1, and VLDLR RNA-induced silencing complex loading and transcript levels (-2<log(fold-change)>2; adjusted P value <.05; Wald-test with false discovery rate correction q<0.05). In silico microRNA target analyses revealed that 26 of 119 transcripts (22%) in the transforming growth factor-β signaling pathway were targeted by microRNAs that were found to be dysregulated following Zika virus infection in trophoblasts. In gnotobiotic mice, relative to mock controls, Zika virus-associated fetal pathogenesis included fetal growth restriction (P=.036) and viral persistence in placental tissue (P=.011). Moreover, spatial transcriptomics of murine placentae revealed that Zika virus-specific placental niches were defined by significant up-regulation of complement cascade components and coordinated changes in transforming growth factor-β gene expression. Finally, treatment of Zika virus-infected mice with enoxacin abolished placental Zika virus persistence, rescued the associated fetal growth restriction, and the Zika virus-associated transcriptional changes in placental immune microenvironments were no longer observed.
These results collectively suggest that (1) Zika virus infection and persistence is associated with functionally perturbed microRNA and RNA interference pathways specifically related to immune regulation in placental microenvironments and (2) enhancement of placental microRNA and RNA interference pathways in mice rescued Zika virus-associated pathogenesis, specifically persistence of viral transcripts in placental microenvironments and fetal growth restriction.
寨卡病毒先天性感染可逃避双链RNA检测,并且可能在整个孕期持续存在于胎盘中,而不伴有明显的组织病理学炎症。了解病毒如何在胎盘中持续存在并复制而不引起明显的细胞或组织损伤,是解读母婴垂直传播机制的基础。
胎盘特异性微小RNA被认为是母胎界面病毒抵抗的一个原则。我们旨在验证寨卡病毒在功能上破坏胎盘微小RNA,从而导致病毒持续存在和胎儿发病机制的这一假说。
为验证这一假说,我们在人类和小鼠实验模型中采用了正交方法。在原代人滋养层细胞培养物(n = 5个供体胎盘)中,我们进行了AGO高通量测序紫外线交联和免疫沉淀,以确定微小RNA及其靶标在RNA诱导沉默复合体上的功能负载是否有任何显著变化。将来自相同供体的滋养层细胞分开,用当代第一代寨卡病毒株HN16(感染复数=每细胞1个空斑形成单位)感染或进行模拟感染。为在功能上交叉验证微小RNA-信使RNA相互作用,我们将AGO高通量测序紫外线交联和免疫沉淀结果与对已发表的来自人胎盘盘状标本的大量RNA测序数据(n = 3名受试者;妊娠第一、第二或三个月寨卡病毒阳性,通过流式细胞术分选CD45细胞)的独立分析进行比较,并将其与未感染对照(n = 2名受试者)进行比较。为研究这些微小RNA和RNA干扰网络在寨卡病毒发病机制中的重要性,则使用了对寨卡病毒独特易感的无菌小鼠模型。我们评估了用依诺沙星增强微小RNA和RNA干扰途径是否会影响寨卡病毒发病机制(总共n = 20只母鼠,产生187个胎儿标本)。最后,用空间转录组学(9743个空间转录组)分析该小鼠模型的胎盘(总共n = 14个),以确定免疫微环境中潜在的寨卡病毒相关变化。
我们发现,原代人滋养层细胞感染寨卡病毒会导致胎盘微小RNA调控网络意外破坏。与未感染对照相比,寨卡病毒感染的胎盘在SLC12A8、SDK1和VLDLR的RNA诱导沉默复合体负载及转录水平上有显著改变(-2 < log(倍数变化)> 2;校正P值 <.05;经错误发现率校正的Wald检验q < 0.05)。计算机微小RNA靶标分析显示,转化生长因子-β信号通路中119个转录本中的26个(22%)被微小RNA靶向,这些微小RNA在滋养层细胞感染寨卡病毒后被发现失调。在无菌小鼠中,相对于模拟对照,寨卡病毒相关的胎儿发病机制包括胎儿生长受限(P =.036)和病毒在胎盘组织中的持续存在(P =.011)。此外,小鼠胎盘的空间转录组学显示,寨卡病毒特异性胎盘龛由补体级联成分的显著上调和转化生长因子-β基因表达的协调变化所定义。最后,用依诺沙星治疗寨卡病毒感染的小鼠消除了胎盘寨卡病毒的持续存在,挽救了相关的胎儿生长受限,并且不再观察到胎盘免疫微环境中与寨卡病毒相关的转录变化。
这些结果共同表明,(1)寨卡病毒感染和持续存在与胎盘微环境中免疫调节相关的微小RNA和RNA干扰途径在功能上受到干扰有关;(2)增强小鼠胎盘微小RNA和RNA干扰途径可挽救寨卡病毒相关的发病机制,特别是病毒转录本在胎盘微环境中的持续存在和胎儿生长受限。