Suppr超能文献

通过双原子位点催化剂调控的级联反应电化学发光

Cascade Reaction Regulated Electrochemiluminescence via Dual-Atomic-Site Catalysts.

作者信息

Ye Daixin, Xue Jing-Wei, Cai Jian, Xu Cong-Hui, Fu Ruixue, Zhao Hongbin, Xu Jing-Juan, Zhao Wei

机构信息

Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, P. R. China.

State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

出版信息

Anal Chem. 2023 Aug 29;95(34):12648-12655. doi: 10.1021/acs.analchem.3c00891. Epub 2023 Aug 21.

Abstract

Single-atom catalysts (SACs), a novel kind of electrocatalysts with full metal utilization, have been developed as unique signal amplifiers in several sensing platforms. Herein, based on theoretical prediction of the oxygen reduction reaction (ORR) mechanism on different atom sites, we constructed dual-atomic-site catalysts (DACs), Fe/Mn-N-C, to catalyze luminol-dissolved oxygen electrochemiluminescence (ECL). Computational simulation indicated that the weak adsorption of OH* on a single Fe site was overcome by introducing Mn as the secondary metallic active site, resulting in a synergic dual-site cascade mechanism. The superior catalytic activity of Fe/Mn-N-C DACs for the ORR was proven by the highly efficient cathodic luminol ECL, surpassing the performance of single-site catalysts (SACs), Fe-N-C and Mn-N-C. Furthermore, the ECL system, enhanced by a cascade reaction, exhibited remarkable sensitivity to ascorbic acid, with a detection limit of 0.02 nM. This research opens up opportunities for enhancing both the ECL efficiency and sensing performance by employing a rational atomic-scale design for DACs.

摘要

单原子催化剂(SACs)是一类新型的电催化剂,其金属利用率可达100%,已被开发为多种传感平台中独特的信号放大器。在此,基于对不同原子位点上氧还原反应(ORR)机理的理论预测,我们构建了双原子位点催化剂(DACs),即Fe/Mn-N-C,用于催化鲁米诺-溶解氧电化学发光(ECL)。计算模拟表明,通过引入Mn作为第二金属活性位点,克服了单个Fe位点上OH*的弱吸附,从而形成了协同双位点级联机制。Fe/Mn-N-C DACs对ORR的优异催化活性通过高效的阴极鲁米诺ECL得到证实,超过了单原子位点催化剂(SACs)Fe-N-C和Mn-N-C的性能。此外,通过级联反应增强的ECL系统对抗坏血酸表现出显著的灵敏度,检测限为0.02 nM。本研究通过对DACs进行合理的原子尺度设计,为提高ECL效率和传感性能开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验