Laboratory of Mathematics, Computer Science and Applications, Faculty of Sciences and Technologies, University Hassan II of Casablanca, PO Box 146, Mohammedia, Morocco.
ENCG of Casablanca, University Hassan II, Casablanca, Morocco.
Comput Methods Biomech Biomed Engin. 2024 Aug;27(11):1510-1537. doi: 10.1080/10255842.2023.2245941. Epub 2023 Aug 21.
The aim of this article is to formulate and study a mathematical model describing hepatitis C virus (HCV) infection dynamics. The model includes two essential modes of infection transmission, namely, virus-to-cell and cell-to-cell. The effect of therapy and adaptive immunity are incorporated in the suggested model. The adaptive immunity is represented by its two categories, namely, the humoral and cellular immune responses. Our article begins by establishing some mathematical results through proving the model's well-posedness in terms of existence, positivity and boundedness of solutions. We present all the steady states of the problem that depend on specific reproduction numbers. It moves then to the theoretical investigation of the local and global stability analysis of the free disease equilibrium and the four disease equilibria. The local and global stability analysis of the HCV mathematical model are established the Routh-Hurwitz criteria and Lyapunov-LaSalle invariance principle, respectively. Finally, our article presents some numerical simulations to validate the analytical study of the global stability. Numerical simulations have shown the effect of the drug therapies on the system's dynamical behavior.
本文旨在建立和研究一个描述丙型肝炎病毒(HCV)感染动力学的数学模型。该模型包括两种主要的感染传播方式,即病毒到细胞和细胞到细胞。所提出的模型中包含了治疗和适应性免疫的作用。适应性免疫由其两个类别来表示,即体液和细胞免疫反应。本文首先通过证明模型在解的存在性、正定性和有界性方面的良好定义,得出了一些数学结果。我们给出了依赖于特定繁殖数的所有问题的平衡点。然后,我们对无病平衡点和四个病平衡点的局部和全局稳定性进行了理论研究。HCV 数学模型的局部和全局稳定性分别通过劳斯-胡尔维茨准则和李雅普诺夫-拉塞尔不变性原理来建立。最后,我们给出了一些数值模拟结果来验证全局稳定性的分析研究。数值模拟结果表明了药物治疗对系统动态行为的影响。