Suppr超能文献

利用从高维代谢物开发的生物标志物进行回归校准。

Regression calibration utilizing biomarkers developed from high-dimensional metabolites.

作者信息

Zhang Yiwen, Dai Ran, Huang Ying, Prentice Ross L, Zheng Cheng

机构信息

Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.

Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States.

出版信息

Front Nutr. 2023 Aug 2;10:1215768. doi: 10.3389/fnut.2023.1215768. eCollection 2023.

Abstract

Addressing systematic measurement errors in self-reported data is a critical challenge in association studies of dietary intake and chronic disease risk. The regression calibration method has been utilized for error correction when an objectively measured biomarker is available; however, biomarkers for only a few dietary components have been developed. This paper proposes to use high-dimensional objective measurements to construct biomarkers for many more dietary components and to estimate the diet disease associations. It also discusses the challenges in variance estimation in high-dimensional regression methods and presents a variety of techniques to address this issue, including cross-validation, degrees-of-freedom corrected estimators, and refitted cross-validation (RCV). Extensive simulation is performed to study the finite sample performance of the proposed estimators. The proposed method is applied to the Women's Health Initiative cohort data to examine the associations between the sodium/potassium intake ratio and the total cardiovascular disease.

摘要

解决自我报告数据中的系统测量误差是饮食摄入量与慢性病风险关联研究中的一项关键挑战。当有客观测量的生物标志物时,回归校准方法已被用于误差校正;然而,仅针对少数饮食成分开发了生物标志物。本文建议使用高维客观测量来构建更多饮食成分的生物标志物,并估计饮食与疾病的关联。本文还讨论了高维回归方法中方差估计的挑战,并提出了多种解决此问题的技术,包括交叉验证、自由度校正估计器和重新拟合交叉验证(RCV)。进行了广泛的模拟以研究所提出估计器的有限样本性能。所提出的方法应用于妇女健康倡议队列数据,以检验钠/钾摄入比与总心血管疾病之间的关联。

相似文献

本文引用的文献

7
A SIGNIFICANCE TEST FOR THE LASSO.套索(LASSO)的显著性检验
Ann Stat. 2014 Apr;42(2):413-468. doi: 10.1214/13-AOS1175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验