Suppr超能文献

结合生物标志物和食物摄入数据:柑橘类水果摄入量的校准方程。

Combining biomarker and food intake data: calibration equations for citrus intake.

机构信息

Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.

School of Mathematics and Statistics, Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland.

出版信息

Am J Clin Nutr. 2019 Oct 1;110(4):977-983. doi: 10.1093/ajcn/nqz168.

Abstract

BACKGROUND

Measurement error associated with self-reported dietary intake is a well-documented issue. Combining biomarkers of food intake and dietary intake data is a high priority.

OBJECTIVES

The aim of this study was to develop calibration equations for food intake, illustrated with an application for citrus intake. Further, a simulation-based framework was developed to determine the portion of biomarker data needed for stable calibration equation estimation in large population studies.

METHODS

Calibration equations were developed using mean daily self-reported citrus intake (4-d semiweighed food diaries) and biomarker-derived intake (urinary proline betaine biomarker) data from participants (n = 565) as part of a cross-sectional study. Different functional specifications and biomarker transformations were tested to derive the optimal calibration equation specifications. The simulation study was developed using linear regression for the calibration equations. Stability in the calibration equation estimations was investigated for varying portions of biomarker and intake data "qualities."

RESULTS

With citrus intake, linear regression on nontransformed biomarker data resulted in the optimal calibration equation specifications and produced good-quality predicted intakes. The lowest mean squared error (14,354) corresponded to a linear regression model, defined with biomarker-derived estimates of intakes on the original scale. Using this model in a subpopulation without biomarker data resulted in an average mean ± SD citrus intake of 81 ± 66 g/d. The simulation study suggested that in large population studies, biomarker data on 20-30% of the subjects are required to guarantee stable estimation of calibration equations. This article is accompanied by a web application ("Bio-Intake"), which was developed to facilitate measurement error correction in self-reported mean daily citrus intake data.

CONCLUSIONS

Calibration equations proved to be a useful instrument to correct measurement error in self-reported food intake data. The simulation study demonstrated that the use of food intake biomarkers may be feasible and beneficial in the context of large population studies.

摘要

背景

与自我报告的饮食摄入相关的测量误差是一个众所周知的问题。将食物摄入的生物标志物和饮食摄入数据相结合是当务之急。

目的

本研究旨在开发食物摄入的校准方程,并用柑橘类水果摄入量的应用举例。此外,还开发了一个基于模拟的框架,以确定在大型人群研究中稳定校准方程估计所需的生物标志物数据部分。

方法

使用参与者(n=565)的 4 天半定量食物日记和生物标志物衍生的摄入量(尿液脯氨酸甜菜碱生物标志物)的平均每日自我报告的柑橘类摄入量数据,开发了校准方程。测试了不同的功能规格和生物标志物转换,以得出最佳的校准方程规格。使用线性回归开发了模拟研究中的校准方程。研究了在不同的生物标志物和摄入量数据“质量”部分下校准方程估计的稳定性。

结果

对于柑橘摄入量,非转换生物标志物数据的线性回归导致了最佳的校准方程规格,并产生了高质量的预测摄入量。最低的均方误差(14354)对应于线性回归模型,该模型定义了原始尺度上生物标志物衍生的摄入量估计值。在没有生物标志物数据的亚组中使用该模型,导致平均柑橘摄入量为 81±66g/d。模拟研究表明,在大型人群研究中,需要生物标志物数据的 20-30%才能保证校准方程的稳定估计。本文附有一个网络应用程序(“Bio-Intake”),旨在方便自我报告的平均每日柑橘摄入量数据的测量误差修正。

结论

校准方程被证明是校正自我报告的食物摄入数据中测量误差的有用工具。模拟研究表明,在大型人群研究中,使用食物摄入生物标志物可能是可行和有益的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验