Matušů Radek, Senol Bilal, Pekař Libor
Centre for Security, Information and Advanced Technologies (CEBIA-Tech), Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic.
Software Engineering Department, Faculty of Engineering, Aksaray University, Bahçesaray Mahallesi, 68100, Aksaray, Turkey.
Heliyon. 2023 Aug 6;9(8):e18924. doi: 10.1016/j.heliyon.2023.e18924. eCollection 2023 Aug.
This example-oriented article addresses the computation of regions of all robustly relatively stabilizing Proportional-Integral (PI) controllers under various robust stability margins for Linear Time-Invariant (LTI) plants with unstructured multiplicative uncertainty, where the plant model with multiplicative uncertainty is built on the basis of the second-order plant with three uncertain parameters. The applied graphical method, adopted from the authors' previous work, is grounded in finding the contour that is linked to the pairs of P-I coefficients marginally fulfilling the condition of robust relative stability expressed using the norm. The illustrative example in the current article emphasizes that the technique itself for plotting the boundary contour of robust relative stability needs to be combined with the precondition of the nominally stable feedback control system and with the line for which the integral parameter equals zero in order to get the final robust relative stability regions. The calculations of the robust relative stability regions for various robust stability margins are followed by the demonstration of the control behavior for two selected controllers applied to a set of members from the family of plants.
这篇以实例为导向的文章探讨了具有非结构化乘法不确定性的线性时不变(LTI)对象在各种鲁棒稳定性裕度下,所有鲁棒相对稳定的比例积分(PI)控制器区域的计算问题,其中具有乘法不确定性的对象模型基于具有三个不确定参数的二阶对象构建。本文采用的图形方法源自作者先前的工作,其基础是找到与P - I系数对相关的轮廓,这些系数对略微满足使用 范数表示的鲁棒相对稳定性条件。当前文章中的示例强调,用于绘制鲁棒相对稳定性边界轮廓的技术本身需要与标称稳定反馈控制系统的前提条件以及积分参数等于零的线相结合,以获得最终的鲁棒相对稳定性区域。在计算各种鲁棒稳定性裕度下的鲁棒相对稳定性区域之后,展示了将两个选定控制器应用于对象族中的一组对象时的控制行为。