Chen Ran, Ouyang Min, Zhang Jinju, Masoudinia Fatemeh
School of Electronic Science and Engineering, Hunan University of Information Technology, Changsha, 410151, China.
Wuling Power Corporation LTD., Changsha, 410004, China.
Heliyon. 2024 Mar 9;10(6):e27424. doi: 10.1016/j.heliyon.2024.e27424. eCollection 2024 Mar 30.
The present article conducts an investigation into the phenomenon of exponential stability within singular perturbed delayed systems, incorporating time-varying parameters. Singularly perturbed systems serve as essential tools in modeling intricate systems characterized by multiple time scales, wherein one subsystem exhibits significantly faster evolution than the others. The presence of small delays introduces complexities, influencing both state derivatives and delays, further accentuating the intricacies of the system. Drawing upon the principles of singular perturbation theory, the article introduces a novel approach to analyzing the stability of these complex systems, eschewing the conventional assumption of exponential stability in the fast subsystem. Within the scope of this study, we propose a rigorous stability analysis, utilizing Linear Matrix Inequality (LMI) methods, while considering time-varying parameters that exert substantial influence on the system's dynamics. The proposed methodology enables the exploration of system stability beyond conventional assumptions, imparting valuable insights into the behavior of singular perturbed delayed systems amidst varying conditions. Through extensive numerical simulations, the effectiveness and robustness of the approach are validated, illuminating the stability properties of these intricate systems. Comparative studies with existing techniques, which assume exponential stability in the fast subsystem, demonstrate the distinct advantages and uniqueness of the presented approach. The findings underscore the significance of accounting for time-varying parameters in achieving a comprehensive understanding of the exponential stability inherent in singular perturbed delayed systems. This research makes substantial contributions to the field of system stability analysis, particularly in the context of singular perturbed delayed systems featuring time-varying parameters. The originality of our approach lies in introducing a comprehensive analysis framework that overcomes the limitations of existing methodologies. By integrating a novel stability analysis method based on Linear Matrix Inequalities (LMIs), we offer a fresh perspective on achieving exponential stability in such complex systems. Significantly, our work addresses a critical gap in current literature by challenging the assumption of exponential stability in the fast subsystem, a key feature of singularly perturbed systems. Through a meticulous examination of time-varying parameters, we unveil their profound impact on system dynamics, thus enriching the understanding of stability behaviors. The potential real-world applications of our findings span diverse fields, ranging from engineering to mathematical modeling. Performance metrics are a key focal point of our research. Numerical simulations employing our proposed LMIs serve as a robust benchmark, demonstrating the superior stability achieved in comparison to existing methods. This performance-driven evaluation ensures the practical applicability and reliability of our analysis approach across various scenarios.
本文对含时变参数的奇异摄动时滞系统中的指数稳定性现象进行了研究。奇异摄动系统是对具有多个时间尺度的复杂系统进行建模的重要工具,其中一个子系统的演化速度比其他子系统快得多。小延迟的存在引入了复杂性,影响状态导数和延迟,进一步加剧了系统的复杂性。本文借鉴奇异摄动理论的原理,引入了一种分析这些复杂系统稳定性的新方法,摒弃了快速子系统中指数稳定性的传统假设。在本研究范围内,我们提出了一种严格的稳定性分析方法,利用线性矩阵不等式(LMI)方法,同时考虑对系统动力学有重大影响的时变参数。所提出的方法能够突破传统假设来探索系统稳定性,为奇异摄动时滞系统在不同条件下的行为提供有价值的见解。通过广泛的数值模拟,验证了该方法的有效性和鲁棒性,阐明了这些复杂系统的稳定性特性。与在快速子系统中假设指数稳定性的现有技术进行的比较研究,证明了本文方法的独特优势和独特性。研究结果强调了考虑时变参数对于全面理解奇异摄动时滞系统固有指数稳定性的重要性。本研究对系统稳定性分析领域做出了重大贡献,特别是在具有时变参数的奇异摄动时滞系统的背景下。我们方法的创新性在于引入了一个全面的分析框架,克服了现有方法的局限性。通过集成基于线性矩阵不等式(LMI)的新颖稳定性分析方法,我们为在如此复杂系统中实现指数稳定性提供了新的视角。重要的是,我们的工作通过挑战奇异摄动系统的关键特征——快速子系统中的指数稳定性假设,解决了当前文献中的一个关键空白。通过对时变参数的细致研究,我们揭示了它们对系统动力学的深远影响,从而丰富了对稳定性行为的理解。我们研究结果的潜在实际应用涵盖从工程到数学建模等多个领域。性能指标是我们研究的一个关键重点。采用我们提出的LMI进行的数值模拟作为一个强大的基准,证明了与现有方法相比所实现的卓越稳定性。这种以性能为驱动的评估确保了我们分析方法在各种场景下的实际适用性和可靠性。